
SOLUTIONS TO INF3380 PROBLEMS, WEEK 3

Exercise 1

It makes sense to initially distribute
⌊
n
P

⌋
tasks to each process.

(Here b·c simply means ”round down.”)

If we are lucky, this accounts for all the tasks, but in general we are left with
a remainder term r that is somewhere between 0 and P − 1. In code, this is
simply

int init_dist = n / P;

int remainder = n % P;
1

If we label the processes by p0, p1, ..., pP , it is logical to distribute the r
remaining tasks among the r first processes, p0, p1, ..., pr−1. We can easily
implement this in code:

int my_tasksize, tasksize_total, myrank, numprocs;

// Find out myrank, numprocs, tasksize_total here

// ...

my_tasksize = tasksize_total / numprocs;

if (myrank < tasksize_total % numprocs) my_tasksize ++;

Exercise 2

Directly:
Worker 0 Worker 1 Worker 2 Worker 3

t = 0 min Begin T0 (idle) (idle) (idle)
t = 10 min T0 complete; begin T1 Begin T2 (idle) (idle)
t = 20 min T1 complete; begin T3 (etc.) Begin T4 Begin T5 Begin T6
t = 30min Begin T7 Begin T8 Begin T9 Begin T10
t = 40min Begin T11 Begin T12 Begin T13 Begin T14
t = 50min T11 complete T12 complete T13 complete T14 complete

Note that there is nothing to be gained from increasing the number of work-
ers to 5, 6 or 7.

1You should be familiar with the remainder operator %. It is frequently referred to as
the modulo operator, which is a great name to use if you want to make it really unclear
what it does.

1



2 SOLUTIONS TO INF3380 PROBLEMS, WEEK 3

A similar table for 3 workers:
Worker 0 Worker 1 Worker 2

t = 0 min Begin T0 (idle) (idle)
t = 10 min T0 complete; begin T1 Begin T2 (idle)
t = 20 min T1 complete; begin T3 (etc.) Begin T4 Begin T5
t = 30 min Begin T6 Begin T7 Begin T8
t = 40 min Begin T9 Begin T10 Begin T11
t = 50 min Begin T12 Begin T13 Begin T14
t = 60 min Complete Complete Complete

Exercise 3

We’ll label the processes pi,j , where 0 ≤ i ≤ P − 1, 0 ≤ j ≤ Q − 1. We
can split the problem into two one-dimensional problems of the exercise 1
variety, that is, we demand that each process will have a workload of size
ki × lj . Then

ki =
⌊m
P

⌋
+ ei ,

lj =

⌊
n

Q

⌋
+ fj ,

where

ei =

{
1 if i < m mod P ,
0 otherwise.

fj =

{
1 if j < n mod Q ,
0 otherwise.

(This is a nice demonstration of how there’s no problem simple enough that
you can’t make it indecipherable with math.)

Again translated into C code:

int k, l, m, n, mycoords[2], numprocs_cartesian[2];

// Find out mycoords, numprocs_cartesian, m, n here

// ...

k = m / numprocs_cartesian[0];

if (mycoords[0] < m % numprocs_cartesian[0]) k ++;

l = n / numprocs_cartesian[1];

if (mycoords[1] < n % numprocs_cartesian[1]) l ++;

Remark: Obviously, this distribution will usually be strictly less fair than
the 1d variant, and it is possible to make more fair distributions if you’re
willing to divide work with crazier shapes.



SOLUTIONS TO INF3380 PROBLEMS, WEEK 3 3

More stuff: There is a nice structure to this distribution. Specifically,
given any process pi,j , its workload is of the same height as all its left-
right neighbours; similarly it has the same width as all its above-below
neighbours. Okay, so this is a rather trite observation, but it does make for
easy communication between neighbouring processes.

Exercise 4

Put ti,j to be subtask j of task i, 0 ≤ i ≤ n−1, 0 ≤ j ≤ m−1; for reference,
the pipeline has the following structure.

Stage 0 Stage 1 (...) Stage m− 1
t = 0 Begin t0,0 (...)
t = 1 Begin t0,1 Begin t1,0 (...)
(...) (...)
t = m− 1 Begin tm−1,0 Begin tm−2,1 (...) Begin t0,m−1

As the name suggests, the setup is shaped rather like a pipe, where tasks
flow continuously through the pipe from left to right. Subtask ti,j can only
commence when the preceding subtasks ti,0, ti,1, · · · , ti−j−1 have completed;
once a subtask has passed through a stage, the stage is ready to commence
work on a new subtask of the same type.

Clearly an entire task takes m time units to pass through the entire m-
stage pipe, and the final tasks enters the pipe (i.e. reaches stage 0) at time
t = n− 1. Summing up, the final task will commence at time t = n− 1, all
tasks have passed the pipeline at time Tpipe := m + n− 1.

(This is of course an extremely simple model. It is possible that some
subtasks take more time to complete, or you can dedicate multiple cores to
some or all stages.)

Exercise 5

Computing the tasks sequentially takes time Tseq := m · n, so we have

p =
Tseq

Tpipe
=

m · n
m + n− 1

.

Now it’s just a matter of solving for n,

mp + np− p = mn ,

p(m− 1) = n(m− p) ,

n = p
m− 1

m− p
.

In particular p = 1 implies n = 1, (that is, we get no speedup from sending
a single task through the pipeline, which makes sense) and p → m implies
n→∞.


