
Solutions to INF3380 problems, week 4

February 20, 2017

Exercise 1

There were some similar exercises last week; recall the general principle of
giving priority to tasks along the critical line.

Graph (a)

4 workers

There is only one way to proceed, so this should be trivial. Time required
is simply 10 + 9 + 8 = 27 time units.

3 workers

Broadly speaking, there are two ways to proceed; either unlock the leftmost
task (task 6) on tier 2 (e.g. by completing tasks 1, 3 and 4) (step 1), then
completing that one while unlocking the right task (step 2), or we could
unlock the rightmost task instead. Regardless, we are left with a ”tail” of
tasks (either task 5 or task 6, then task 7) that must be completed in serial.

However we proceed, steps 1 and 2 will take a constant 20 time units in to-
tal; completing Task 6 before 5 leaves the smallest tail, however (6 + 8 = 14
vs 9 + 8 = 17 time units), so we go with that.

Total time t = 34 TU.

2 workers

There are several ways to proceed, but it seems clear that completing the
first tier of tasks first makes for maximum concurrency and minimum idling,
so we go with that. Total time t = 10 + 10 + 9 + 8= 37 TU.
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Graph (b)

4 workers

Again, nothing very interesting happens here, perhaps other than the fact
that after the first batch of tasks has completed, everything happens in serial.

Total time elapsed is t = 10 + 6 + 11 + 7= 34 TU.

3 workers

We’ll run with the idea of giving priority to tasks along the critical path,
as well as tasks unlocking them. It should be clear that this takes the same
amount of time as with four workers.

Total time elapsed is t = 10 + 6 + 11 + 7= 34 TU.

2 workers

Same principle.

Total time elapsed is t = 10 + 10 + 11 + 7 = = 38 TU.

Exercise 2

(a) (b) (c) (d)
Max concurrency:

8 8 8 2
Critical path length:

4 4 7 8
Max speedup:

15/4 15/4 2 15/8
Workers needed:

8 8 3 2
Speedup 2/4/8 workers:

15/8, 15/6, 15/4 (same) 14/8, 14/7, 14/7 15/8
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Exercise 3

We are tasked with proving the bound⌈
t

l

⌉
≤ d ≤ t− l + 1 , (∗)

for a task dependency graph with t tasks, maximal degree of concurrency d
and critical path length l. That is, we must prove the two inequalities⌈

t

l

⌉
≤ d (∗∗)

and
d ≤ t− l + 1 . (∗ ∗ ∗)

(The symbol d·e, commonly referred to as the ”ceiling function,” means
”round up.”)

Geometric interpretation

1

4 3 2 1

6 5

7

This picture is not a formal proof, but gives an intuitive idea of why the
inequality holds. Given a task dependency graph G with maximal degree of
concurrency d and critical path length l, we map it into a rectangular block
made of d × l cells as shown. For such a map to be possible, we see that
there can be no more than l ·d tasks to a graph (or we’d have to use a bigger
rectangle); similarly there can be no fewer than l + d− 1 tasks (or we could
use a smaller rectangle); these bounds trivially imply (∗).

Formal proof:

To show (∗∗), it suffices to note that
t

l
is the average degree of concurrency;

it is obviously bounded by the maximal degree of concurrency, which is d.

1Thanks to student Mikael Toresen for the idea.
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Moreover, the inequality extends to rounding up, because d is necessarily
an integer.

For (∗ ∗ ∗), we use induction. Note first that for a single-node graph, the
inequality holds trivially (with d = t = l = 1 = t − l + 1). For any given
task dependency graph G with t nodes, we wish to show that we can remove
nodes one by one until we are left with a graph Ĝ, with only a single node
if necessary, such that (∗ ∗ ∗) holds for Ĝ, and that if we then reattach the
nodes, one by one, (∗ ∗ ∗) holds for all these intermediary graphs.

So let Gk be a graph with k nodes, maximal degree of concurrency dk and
critical path length lk, such that (∗ ∗ ∗) holds for Gk. Now, if we attach a
node, exactly one of three possibilities will hold:

1. Maximal degree of concurrency increases by one, dk+1 = dk + 1,

2. Critical path length increases by one, lk+1 = lk + 1.

3. Neither d nor l increase, dk+1 = dk, lk+1 = lk.

(see picture)

(1)

(2)

(3)

Now it’s just a matter of checking each case.
Case 1. Add 1 to both sides of (∗ ∗ ∗),

dk+1 = dk + 1 ≤ (k + lk − 1) + 1 = (k + 1)− lk+1 + 1 .

4
Case 2. We add and subtract 1 to the rhs of (∗ ∗ ∗):

dk+1 = dk ≤ k − lk − 1 + 1 + 1 = (k + 1)− lk+1 + 1 .

4
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Case 3. Adding 1 to the rhs of (∗ ∗ ∗),

dk+1 = dk ≤ k − lk + 1 ≤ (k + 1)− lk+1 + 1 .

4
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Exercise 4

We’ll assume the house coordinates is stored in a double array house_coords[2 * n],
such that house_coords[2 * i and house_coords[2 * i + 1] give the x
and y coordinates for house i respectively. For reference, a basic serial im-
plementation would be

1 double d i s t ( double x1 , double y1 , double x2 , double y2 ) {

3 re turn sq r t ( ( x1 − x2 ) ∗ ( x1 − x2 ) + ( y1 − y2 ) ∗ ( y1 − y2 ) ) ;
}

5

double compute mindist ( double ∗ houses coords , i n t n ,
7 double s t a t i o n c o o r d s [ 2 ] ) {

double cu r r en td i s t , mindist , x , y , sx , sy ;
9

sx = s t a t i o n c o o r d s [ 0 ] ; sy = s t a t i o n c o o r d s [ 1 ] ;
11

13 mindist = d i s t ( house coords [0]−>x , house coords [ 1 ] , sx , sy ) ;
f o r ( i n t i = 1 ; i < n ; i ++) {

15

x = house coords [ 2 ∗ i ] ;
17 y = house coords [ 2 ∗ i + 1 ] ;

c u r r e n t d i s t = d i s t (x , y , sx , sy ) ;
19 mindist = MIN( mindist , c u r r e n t d i s t ) ;

21 }
re turn mindist ;

23 }

25 i n t main ( i n t narg , char ∗∗ argv ) {

27 // obta in data

29 // mindist = compute mindist ( e t c ) ;

31 }

To implement this in MPI, assuming each process sits on its own portion of
the data, an obvious solution is that each process calls the compute_mindist
function above to find its local minimum, and an all-to-one reduction is
performed to find the global minimum. This is just a single line of code,
something along the lines of
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MPI Reduce(& loca l min , &global min , 1 , MPI DOUBLE, MPI MIN, 0 ,
MPICOMMWORLD) ;

(check MPI documentation for an explanation). Here, process 0 is the pro-
cess that ends up with the global minimum.

Distributing. In exercises like these, it’s likely that at the start, process 0
sits on the entire data set, though MPI does have functions for reading and
writing to file in parallel. In this case, the easiest way to distribute data
is via MPI_Scatterv. For a demonstration see the next exercise; for short
problems like this, scattering data would probably be at least half of the
code.
Extra. It’s very possible we don’t want just to find the shortest distance,
but also which house it is that gives that distance (i.e. given the original
houses array of structs, we want to find i such that houses[i] is the closest
house to the railway). In serial programming, that would be just a few extra
lines of code, but in parallel the problem becomes...actually, still quite easy.
The problem occurs often enough that MPI has its own reduction routine for
it, called MINLOC.

Exercise 5

Note

(The string search algorithm itself isn’t really part of the scope of the course,
so just look up Boyer-Moore or Boyer-Moore-Horspool on the internet for
an example of an implementation.)

We’ll assume process 0 initially has the pattern of size l, the text of size
n, and that there are p processes. Roughly speaking, the algorithm goes as
follows:

1. Compute how much of the text to give to each process.

2. Broadcast the pattern and distribute (scatter) the text in blocks.

3. It’s possible the patterns occur at the ”seams” where one process’
portion ends and the next process’ begins, so find some brilliant fix to
this.
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4. Have each process search through its portion of the text and count
occurrences of the pattern, by means of, say, Boyer-Moore.

5. Sum the local results via an all-to-one reduction.

For step (1), a fair distribution is, as we saw last week

nj =

⌊
n

p

⌋
+ ej ,

where ej is 0 or 1 depending on the remainder of n/p. However, we must
have some overlap between the texts to be able to search at the seams, so
we’ll give process 1 the l− 1 last characters from process 0’s portion, and so
on. If l is small, the distribution is still mostly fair, so we leave it unchanged;
otherwise (or just for the sake of pedantry) we could give process 0 a slightly
bigger portion of the text to search through.

See ex5_dist.c for a demonstration of the distribution.

Exercise 6

If we’re interested only in the first instance of a pattern, the nature of the
problem seems to change quite drastically. If we tried the distribution from
Exercise 5, and let’s assume the pattern appeared with some frequency, such
that, say, Process 1 found it quite early, then processes 1, 2, 3, ..., P − 1
should terminate, or they’d be busy performing useless work. That leaves
us with process 0 doing all the remaining work. As well, we wish to keep
communication to a minimum.

A better idea is a block-cyclic distribution (see lecture slides or curriculum
book pp. 122-123), with occasional communication (all-to-all) to check if
there’s a point in continuing. This increases initialisation overhead, and
if the individual blocks are small enough and the pattern big enough, the
overlaps will take a relatively large amount of memory. On the other hand,
bigger blocks will lead to the same problems as we started with.

So we’re left with the task of the task of balancing these factors, as well as
determining how often processes should communicate. But that’s why we
have philosophers.
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