
Solutions to exercises, week 5

March 1, 2017

Exercise 1

This problem is trivial. Just remember that we always operate in base two
in computer science. You should understand why.

Exercise 2

The algorithm and an in-depth description also appears in the course book,
pages 155-157.

A brief explanation of AND / XOR

The bitwise AND/XOR operators work as follows: given two integers,
convert them to binary format, e.g. 14 and 15 become 1110 and 1111 re-
spectively. The i’th bit of x AND y is the multiplicative product of the
i’th bits of x and y (that is, the product is 1 if they’re equal, otherwise it’s
0). The i’th bit of x XOR y is 1 if the bits are different from each other,
otherwise it’s zero. Hence, using 14 and 15 as examples,

1110 | 1110

AND 1111 | XOR 1111

-------- | ---------

= 1110 | = 0001

In C and Python, the bitwise operators are & and ^ respectively.

Two properties of the XOR operator

First, XOR applied twice cancels, i.e.

x ^ y ^ y = x;

1



In the algorithm below, we’ll use it to switch back and forth between virtual_ids
and ids.

Second, it’s a nice way to model the ”binary format distance” between num-
bers. For example, if we compare 10 with 5,

1010 ^ 0101 = 1111;

there are four ones in the result, so we have to travel along four dimensions
on a hypercube to get from node 5 to node 10.

The explanation

This explanation is just meant as an aid, so you should go through the al-
gorithm on your own. If we use the standard four-dimensional hypercube
setup as an example, with source = 0, then the send/receive routine is just
the song and dance demonstrated in the picture below. It should be familiar
from the course, or at least you should be able to convince yourself that this
is a clever routine indeed.

Now, the first step of the algorithm is obtaining my_virtual_id, defined as
my_id ^ source. Note carefully that if my_id = source, then my_virtual_id

becomes 0 (0000 in binary), and that the further away my_id is on the hy-
percube from the source, the more ones appear in my_virtual_id (again in
binary format). The upshot is that we may as well assume that the source
is process 0000. The picture was right all along!

The broadcast is completed in d = 4 iterations (i.e. i = 3, 2, 1, 0), and during
each iteration we’ll send along one dimension (first along the fourth, then
the third, and so on), see below. A comparison vs. the mask variable is used
to check whether a given node is about to participate in sending/receiving
of data, and finally, if so, we determine whether this node is on the sending
or the receiving end. Looking at the picture, you should be able to convince
yourself that the node should send if bit i of the node’s virtual id is 0, and
receive if it’s 1.

2



0000 0001

0010

0100

0011

0101

0110 0111

1000 1001

1010 1011

1100 1101

1110 1111

In the picture, the red arrow represents the first send, blue the second, then
green, then yellow.

Exercise 3

Assume now that the number of processes p is not a power of 2. We’ll want
to stick as closely to the original algorithm as possible. With p processes,
we have d = dlog pe, corresponding to a d-dimensional hypercube with the
final nodes deleted.

If we first try to go through the algorithm with source = 0, we shouldn’t
have to change that much, because the missing nodes are all at the end.
Hence, it suffices to add a check before sending to confirm that the destina-
tion node exists.

If on the other hand we were to try, say, source = 4, and p = 12, and
calculate the virtual ids of the missing nodes,

1100 ^ 0100 = 1000;

1101 ^ 0100 = 1001;

1110 ^ 0100 = 1010;

1111 ^ 0100 = 1011;

then we see that the algorithm fails completely, because it needs those miss-
ing nodes.

Having said that, we’ll use the following fix: replace the way we compute
virtual_ids. Specifically, we’ll let the virtual identities be the original
identities, but shifted to the left by source (modulo p). That is,

my_virtual_id = ((my_id - source) + p) % p;

3



Given a virtual identity, we recover the original id by shifting it by source
units to the right,

my_id = (my_virtual_id + source) % p;

In this way we ensure that each the virtual ids 0, 1, · · · , p − 1 corresponds
to an actual process.

In summary, we require two changes to the algorithm:

• First, we replace the way we compute the virtual ids by using a left-
shift.

• Next, we make a slight addition to the send routine, wherein we simply
check that the destination exists (i.e. that virtual_dest < p).

There’s a downside to this, as you might have guessed: the remainder oper-
ator isn’t really compatible with how the hypercube works. For example, if
we were to try the algorithm with p = 16 and source = 1, and observe the
send/receive output given by process 0, we might get something like

doing broadcast rank 0 out of 16 processes with source 1

doing nothing

doing nothing

doing nothing

Message received from process 15

So we see that the data must take potentially quite long detours. Arguably
this structure is more ring-like than hypercube-like.

Exercise 4

See ex4.c. As expected, a reduction routine is really just a broadcast in
reverse, so this is just Exercise 3 backwards.

You can also find an algorithm implementing an all-to-one reduction in the
course book on page 158.

Additional exercises

See programs in the folder named additional. You can use monochrome
pictures from the course page to test, and you should have no trouble un-
ravelling the mysteries of image flipping.

4



Using the embedded library in C is kind of weird and complicated, as you’ve
no doubt seen. The solution in this code is mostly taken from the template
for the first mandatory assignment. It’s a two-step implementation, where
you first create something called a static library, and then linking it to your
code via by passing a -l<LIBRARY HERE> flag to the compiler. You can run
the Makefile like this:

>make library

>make main

5


