
INF3380: Parallel Programming for Scientific
Problems

Xing Cai

Simula Research Laboratory, and

Dept. of Informatics, Univ. of Oslo

INF3380: Parallel Programming for Scientific Problems – p. 1

Course overview & recap of serial programming

Course overview & recap of serial programming – p. 2

Motivations

Many problems in natural sciences can benefit from large-scale
computations

more details
better accuracy
more advanced models

Example of huge computations: Detailed weather analysis of the
entire globe

surface area: 510, 072, 000 km2

spatial resolution 1× 1km2 → 5.1× 108 small patches

spatial resolution 100× 100m2 → 5.1× 1010 small patches
additional layers in the vertical direction
high resolution in the time direction

Traditional single-CPU computers are limited in capacity
typical clock frequency 2 ∼ 4 GHz
typical memory size 4 ∼ 16 GB

Course overview & recap of serial programming – p. 3

Motivations (cont’d)

Parallel computers are now everywhere!
CPUs nowadyas have more than one core on a chip
One computer may have several multicore chips
There are also accelerator-based parallel architectures —
GPGPU
Clusters of different kinds

Course overview & recap of serial programming – p. 4

An example of multicore-based cluster

Memory

Core Core CoreCore

Cache Cache

Core Core CoreCore

Cache Cache

Bus

Compute Node

Memory

Core Core CoreCore

Cache Cache

Core Core CoreCore

Cache Cache

Bus

Compute Node

Memory

Core Core CoreCore

Cache Cache

Core Core CoreCore

Cache Cache

Bus

Compute Node
In

te
rc

on
ne

ct
 N

et
w

or
k

Course overview & recap of serial programming – p. 5

Why learning parallel programming?

Parallel computing – a form of parallel processing by concurrently
utilizing multiple computing units for one computational problem

shortening computing time
solving larger problems

However . . .
modern multicore-based computers are good at multi-tasking, but
not good at automatically computing one problem in parallel
automatic parallelization compilers have had little success
special parallel programming languages have had little success
serial computer programs have to be modified or rewritten to
utilize parallel computers

Learning parallel programming is thus important!

Course overview & recap of serial programming – p. 6

What will you learn in INF3380?

An introduction to parallel programming
important concepts
basic parallel programming skills (MPI and OpenMP)
use of multicore PCs and PC clusters
a peek into GPU computing

After finishing the course, you should be able to write simple parallel
programs

You should also be able to learn more about advanced parallel
programming on your own later

Course overview & recap of serial programming – p. 7

Teaching approaches

Focus on fundamental issues
parallel programming = serial programming + finding parallelism
+ enforcing work division and collaboration

Use of examples relevant for natural sciences
mathematical details are not required
understanding basic numerical algorithms is needed
implementing basic numerical algorithms is essential

Hands-on programming exercises and tutoring

Course overview & recap of serial programming – p. 8

Some important info

Textbook: Ananth Grama, George Karypis, Vipin Kumar and Anshul
Gupta, Introduction to Parallel Computing, 2nd edition, Addison Wesley,
2003

Lecture slides

Two mandatory assignments

Written exam with grades A–F

Course overview & recap of serial programming – p. 9

Recapitulation of serial programming

Recapitulation of serial programming – p. 10

What is serial programming?

Roughly, a computer program executes a sequence of operations
applied to data structures

A program is normally written in a programming language

Data structures:
variables of primitive data types (char, int, float, double
etc.)
variables of composite and abstract data types (struct in C,
class in Java & Python)
array variables

Operations:
statements and expressions
functions

Recapitulation of serial programming – p. 11

Variables

In a dynamically typed programming language (e.g. Python)
variables can be used without declaration beforehand

a = 1.0
b = 2.5
c = a + b

In statically typed languages (e.g. Java and C) declaration of
variables must be done first

double a, b, c;

a = 1.0;
b = 2.5;
c = a + b;

Recapitulation of serial programming – p. 12

Simple example

Suppose we have temperature measurement for each hour during a
day

t1 is the temperature at 1:00 o’clock, t2 is the temperature at 2:00
o’clock, and so on.

How to find the average temperature of the day?

We need to first add up all the 24 temperature measurements:

T = t1 + t2 + . . .+ t24 =
24
∑

i=1

ti

The average temperature can then be calculated as
T

24
.

Recapitulation of serial programming – p. 13

Simple example (cont’d)

How to implement the calculations as a computer program?

First, create an array of 24 floating-point numbers to store the 24
temperatures. That is, t[0] stores t1, t[1] stores t2 and so on.
Note that array index starts from 0!

Sum up all the values in the array t
Same syntax for the computational loop in Java & C:
T = 0;
for (i=0; i<24; i++)
T = T + t[i];

Syntax for Python:
T = 0
for i in range(0,24):
T = T + t[i]

Finally, t average = T/24;

Recapitulation of serial programming – p. 14

Similarities and differences between languages

For scientific applications, arrays of numerical values are the most
important basic building blocks of data structures

Extensive use of for-loops for doing computations

Different syntax details
allocation and deallocation of arrays

Java: double[] v=new double[n];
C: double *v=malloc(n*sizeof(double));
Python: v=zeros(n,dtype=float64) (using NumPy)

definition of composite and abstract data types
I/O

Recapitulation of serial programming – p. 15

C as the main choice of programming language

C is one of the dominant programming languages in computational
sciences

Syntax of C inspired many newer languages (C++, Java, Python)

Good computational efficiency

C is ideal for using MPI and OpenMP (also GPU programming)

We will thus choose C as the main programming language

This lecture will give a crash course on scientific programming, with
syntax details in C

Recapitulation of serial programming – p. 16

Some words about pointers in C

A variable in a program has a name and type, its value is stored
somewhere in memory

Type *p declares a pointer to a variable of datatype Type

A pointer is actually a special type of variable, used to hold the
memory address of a variable

From a variable to its pointer: int a; int *p; p = &a;

We can use a pointer to change the variable value *p = 2;

A pointer can also be used to hold the memory address of the first
entry of an array (such as returned by malloc)

Array indexing: p[0], p[1] . . .

Pointer arithmetic:

int *p = (int*)malloc(10*sizeof(int));
int *p2 = p + 3; /* p2 is now pointing to p[3] */

Recapitulation of serial programming – p. 17

Allocating multi-dimensional arrays (1)

Let’s allocate a 2D array for representing a m× n matrix

A =

a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn

Java:

double[][] A = new double[m][n];

C:

double **A = (double**)malloc(m*sizeof(double*));
for (i=0; i<m; i++)

A[i] = (double*)malloc(n*sizeof(double));

Same syntax in Java and C for indexing and traversing a 2D array

for (i=0; i<m; i++)
for (j=0; j<n; j++)
A[i][j] = i+j;

Recapitulation of serial programming – p. 18

Allocating multi-dimensional arrays (2)

Use of NumPy makes array allocation very simple in Python

from numpy import *
A = zeros((m,n), dtype=float64)

Indexing and traversing a 2D array in Python

for i in range(0,m):
for j in range(0,n):
A[i,j] = i+j;

Recapitulation of serial programming – p. 19

More about two-dimensional arrays in C (1)

C doesn’t have true multi-dimensional arrays, a 2D array is actually
an array of 1D arrays (like Java)

A[i] is a pointer to row number i+1

It is also possible to use static memory allocation of fix-sized 2D
arrays, for example:

double A[10][8];

However, the size of the array is decided at compiler time (not
runtime)

Recapitulation of serial programming – p. 20

More about two-dimensional arrays in C (2)

Dynamic memory allocation of 2D arrays through e.g. malloc

Another way of dynamic allocation, to ensure contiguous underlying
data storage (for good use of cache):

double *A_storage=(double*)malloc(n*n*sizeof(double));
double **A = (double**)malloc(n*sizeof(double*));
for (i=0; i<n; i++)

A[i] = &(A_storage[i*n]);

.

.

.

double**

.

double*

Recapitulation of serial programming – p. 21

Deallocation of arrays in C

If an array is dynamically allocated, it is important to free the storage
when the array is not used any more

Example 1

int *p = (int*)malloc(n*sizeof(int));
/* ... */
free(p);

Example 2

double **A = (double**)malloc(m*sizeof(double*));
for (i=0; i<m; i++)

A[i] = (double*)malloc(n*sizeof(double));
/* ... */
for (i=0; i<m; i++)

free(A[i]);
free(A);

Be careful! Memory allocation and deallocation can easily lead to
errors

Recapitulation of serial programming – p. 22

The form of a C program

A program in C is made up of functions

A stand-alone C program must at least implement function main,
which will be executed by the operating system

Functions are made up of statements and declarations

Variables must be declared before usage

Possible to use functions and variables declared in libraries

Recapitulation of serial programming – p. 23

Some syntax details in C

Semicolon (;) terminates a statement

Braces ({}) are used to group statements into a block

Square brackets ([]) are used in connection with arrays

Comments can be added between /* and */

Recapitulation of serial programming – p. 24

Functions in C

Function declaration specifies name, type of return value, and
(optionally) a list of parameters

Function definition consists of declaration and a block of code, which
encapsulates some operation and/or computation

return_type function_name (parameter declarations)
{

declarations of local variables
statements

}

Recapitulation of serial programming – p. 25

Function arguments

All arguments to a C function are passed by value

That is, a copy of each argument is passed to the function

void function test (int i) {
i = 10;

}

The change of i inside test has no effect when the function returns

Passing pointers as function arguments can be used to get output

void function test (int *i) {

*i = 10;
}

The change of i inside test now has effect

Recapitulation of serial programming – p. 26

Function example 1: swapping two values

void swap (int *a, int *b)
{

int tmp;
tmp = *a;

*a = *b;

*b = tmp;
}

Recapitulation of serial programming – p. 27

Function example 2: smoothing a vector

We want to smooth the values of a vector v by the following formula:

vnewi = vi + c (vi−1 − 2vi + vi+1) , 2 ≤ i ≤ n− 1

where c is a constant
void smooth (double *v_new, double *v, int n, double c)
{

int i;
for (i=1; i<n-1; i++)
v_new[i] = v[i] + c*(v[i-1]-2*v[i]+v[i+1]);

v_new[0] = v[0];
v_new[n-1] = v[n-1];

}

Similar computations occur frequently in numerical computations

Recapitulation of serial programming – p. 28

Function example 3: matrix-vector multiplication

We want to compute y = Ax, where A is a m× n matrix, y is a vector of
length m and x is a vector of length n:

yi = Ai1x1 +Ai2x2 + . . . Ainxn =
n
∑

j=1

Aijxj , 1 ≤ i ≤ m

void mat_vec_prod (double **A, double *y, double *x,
int m, int n)

{
int i,j;
for (i=0; i<m; i++) {
y[i] = 0.0;
for (j=0; j<n; j++)

y[i] += A[i][j]*x[j];
}

}

Recapitulation of serial programming – p. 29

Example of a complete C program

#include <stdio.h> /* import standard I/O functions */

int myfunction(int x) /* define a function */
{

int r;
r = x*x + 2*x + 3;
return r;

}

int main (int nargs, char** args)
{

int x,y;
x = atoi(args[1]); /* read x from command line */
y = myfunction(x); /* invoke myfunction */
printf("x=%d, y=%d\n",x,y);
return 0;

}

Recapitulation of serial programming – p. 30

Compilation

Suppose a file named first.c contains the C program

Suppose we use GNU C compiler gcc

Step 1: Creation of a file of object code:

gcc -c first.c

An object file named first.o will be produced.

Step 2: Creation of the executable:

gcc -o run first.o

The executable will have name run.

Alternatively (two steps in one),

gcc -o run first.c

Better to use the 2-step approach for complex examples

Recapitulation of serial programming – p. 31

Some important compiler options

During compilation:
Option -O turns on optimization flag of the compiler
Option -c produces an object file for each source file listed
Option -Ixxx suggests directory xxx for search of header files

During linkage:
Option -lxxx links with a specified library with name libxxx.a
or libxxx.so
Option -Lxxx suggests directory xxx for search of library files
Option -o specifies the name of the resulting executable

Recapitulation of serial programming – p. 32

	Motivations
	Motivations (cont'd)
	An example of multicore-based cluster
	Why learning parallel programming?
	What will you learn in INF3380?
	Teaching approaches
	Some important info
	What is serial programming?
	Variables
	Simple example
	Simple example (cont'd)
	Similarities and differences between languages
	C as the main choice of programming language
	Some words about pointers in C
	Allocating multi-dimensional arrays (1)
	Allocating multi-dimensional arrays (2)
	More about two-dimensional arrays in C (1)
	More about two-dimensional arrays in C (2)
	Deallocation of arrays in C
	The form of a C program
	Some syntax details in C
	Functions in C
	Function arguments
	Function example 1: swapping two values
	Function example 2: smoothing a vector
	Function example 3: matrix-vector multiplication
	Example of a complete C program
	Compilation
	Some important compiler options

