Suggested solutions for the INF3380 exam of spring 2013

Problem 1 (10\%)

If a computational problem has 10% of its work that must be carried out serially, prove that the maximum obtainable speedup cannot exceed 10 by any parallelization.

Suggested solution: The obtainable speedup can be calculated as

$$
S(p)=\frac{T(1)}{T(p)} \leq \frac{f+(1-f)}{f+\frac{1-f}{p}},
$$

where f is the fraction of inherently serial work in $T(1)$. It is therefore clear that $\max S(p)=$ $\lim S(p)_{p \rightarrow \infty}=\frac{1}{f}$. For the current case, where we have $f=10 \%$, the maximum speedup can thus not exceed 10.

Comment: The reason of having \leq in the above formula is due to consideration of likely parallelization overhead and possible load imbalance.

Problem 2 (15\%)

```
for (k=0; k<n; k++)
    for (j=0; j<k; j++)
        A[k][j] = A[j][k];
```

Write an OpenMP parallelization of the above code segment. Discuss your solution with respect to load balancing and parallelization overhead.

Suggested solution: First of all, the above nested double for-loop is parallelizable, without the danger of race condition. However, the difficulty is that the work amount with each k-iteration increases (because of for ($j=0 ; j<k ; j++)$).

If \#pragma omp parallel for is inserted before the for-loop with index k, load imbalance will arise. This is because the default scheduler is static and uses a largest possible chunksize value by default.

If \#pragma omp parallel for is inserted before the for-loop with index j, load imbalance will no longer be a problem. However, the overhead due to repeatedly forking and joining threads will be excessive.

The best solution is as follows:

```
#pragma omp parallel for schedule(dynamic, chunksize)
for (k=0; k<n; k++)
    for (j=0; j<k; j++)
        A[k][j] = A[j][k];
```

Comment: The value of chunksize should neither be too large or too small, depending on the actual size of n. Another possibility is to use the guided scheduler. A third possibility is to use schedule (static, 1), for which load imbalance will not be very severe.

Problem 3 (20\%)

In Oblig-1 we have looked at the problem of "image denoising", where the computation at each pixel is of the following form:

$$
\bar{u}_{i, j}=u_{i, j}+\kappa\left(u_{i-1, j}+u_{i, j-1}-4 u_{i, j}+u_{i, j+1}+u_{i+1, j}\right) .
$$

Suppose MPI is used to parallelize "image denoising" and that MP I_Send and MP I_Recv are used to exchange data between two and two neighbors. Moreover, we assume that the time taken to exchange an MPI message of size m is

$$
t_{s}+t_{w} m,
$$

where t_{s} and t_{w} are two known constant values.
For the case of a picture that has $n \times n$ pixels and there are P MPI processes, discuss when it pays off to use a 2D block-partitioning instead of a 1D block-partitioning. (Hint: you are supposed to derive a relation between n, t_{s}, t_{w} and P.)

Suggested solution: For the 1D block-partitioning, most of the MPI processes will have two neighbors that need to exchange data with. The size of each message in such a case is n. Therefore, the total communication overhead per process is

$$
2\left(t_{s}+t_{w} n\right)
$$

For the 2D block-partitioning, most of the MPI processes will have four neighbors that need to exchange data with. The size of each message in such a case is n / \sqrt{P}. Therefore, the total communication overhead per process is

$$
4\left(t_{s}+t_{w} \frac{n}{\sqrt{P}}\right)
$$

In order for the 2D block-partitioning to pay off, we need to have

$$
4\left(t_{s}+t_{w} \frac{n}{\sqrt{P}}\right)<2\left(t_{s}+t_{w} n\right)
$$

which can give the following relationship:

$$
n-\frac{2 n}{\sqrt{P}}>\frac{t_{s}}{t_{w}} .
$$

Problem 4

We want to compute $y=A x$, where A is an $n \times n$ matrix, and x and y are two vectors of length n.

Problem 4a (10\%)

Explain how the matrix-vector multiplication can be parallelized, if we assume a 1D rowwise blockpartitioning of A, x and y.

Suggested solution: The 1D rowwise block-partitioning means that the rows of matrix A are equally distributed among the p processes, each having n / p rows of A. Moreover, the x vector is also equally distributed among the p processes, each having n / p values of x.

Therefore, the first step of parallelization is to do an all-to-all broadcast among the p processes, such that each process gets the entire x vector. Thereafter, each process can independently carry out a local matrix-vector multiplication to produce the desired segment of the y vector.

Problem 4b (15\%)

According to the textbook, the time usage of the above parallelization will be

$$
T_{P}=\frac{n^{2}}{p}+t_{s} \log p+t_{w} n
$$

where p is the number of processing elements, t_{s} and t_{w} are two known constant values.
Carry out a scalability analysis with help of the "isoefficiency" metric.

Suggested solution: Recall that the "isoefficiency" metric is about finding a guidance about how fast the problem size W should (asymptotically) grow as p increases, such that the parallel efficiency is maintained at a constant level. The exact formula of "isoefficiency" metric is expressed as

$$
W=K T_{O}(W, p)
$$

where $K=E /(1-E)$ is a desirable constant and T_{O} is the total overhead.
For the above case of matrix-vector multiplication, we have $W=T_{S}=n^{2}$ and

$$
T_{O}(W, p)=p T_{p}-T_{S}=t_{s} p \log p+t_{w} n p
$$

For the first term of T_{O}, the "isoefficiency" metric requires $n^{2}=K t_{s} p \log p$, whereas the second term of T_{O} requires

$$
n^{2}=K t_{w} n p \quad \Rightarrow \quad n=K t_{w} p .
$$

It can be seen that the second term makes a higher demand on the problem size, which in term means

$$
W=n^{2}=K^{2} t_{w}^{2} p^{2}=O\left(p^{2}\right)
$$

Problem 5

The problem of "all-pairs shortest paths" is about finding the shortest path between any pair of nodes in a graph. As the starting point we have a matrix A that shows all the direct paths between the nodes. As the result we want to compute a matrix D such that $d_{i . j}$ is the length of the shortest path from node i to node j.

Problem 5a (10\%)

Compute D if A is as follows:

$$
\left[\begin{array}{cccc}
0 & 4 & \infty & \infty \\
2 & 0 & 3 & 3 \\
\infty & 4 & 0 & 3 \\
\infty & 2 & 4 & 0
\end{array}\right]
$$

$$
D=\left[\begin{array}{llll}
0 & 4 & 7 & 7 \\
2 & 0 & 3 & 3 \\
6 & 4 & 0 & 3 \\
4 & 2 & 4 & 0
\end{array}\right]
$$

Problem 5b (10\%)

Explain how Floyd's algorithm can be used to solve the "all-pairs shortest paths"-problem in general.

Suggested solution: Floyd's Algorithm:

```
procedure FLOYD_ALL_PAIRS_SP(A)
begin
        \(D^{(0)}=A ;\)
        for \(k:=1\) to \(n\) do
        for \(i:=1\) to \(n\) do
            for \(j:=1\) to \(n\) do
                \(d_{i, j}^{(k)}:=\min \left(d_{i, j}^{(k-1)}, d_{i, k}^{(k-1)}+d_{k, j}^{(k-1)}\right) ;\)
end FLOYD_ALL_PAIRS_SP
```

Or simply implemented as the following code segment:

```
for (k=0; k<n; k++)
    for (i=0; i<n; i++)
        for (j=0; j<n; j++)
            if ( (d[i][k]+d[k][j]) < d[i][j] )
            d[i][j] = d[i][k]+d[k][j];
```


Problem 5c (10\%)

Parallelize Floyd's algorithm with help of OpenMP programming. (You can assume that matrix A is given as input and the number of nodes is n.)

Suggested solution:

```
#pragma omp parallel default(shared) private(i,j,k)
{
for (k=0; k<n; k++)
    #pragma omp for
    for (i=0; i<n; i++)
        for (j=0; j<n; j++)
            if ( (d[i][k]+d[k][j]) < d[i][j] )
            d[i][j] = d[i][k]+d[k][j];
}
```

Comment: It is very important to use the private (i, j, k) clause, otherwise the OpenMP parallelization won't work.

