
Suggested solutions for the INF3380 exam of spring 2014

Problem 1 (10%)
Suppose a computational problem has been decomposed into many tasks, such that the number of
tasks is larger than the number of available processors. What are the two most important principles
for mapping the tasks to processors?

Suggested solution: As discussed in Section 3.4 of the textbook, the overall objective of the map-
ping is that all tasks complete in the shortest amount of time. That is, the overhead of executing the
tasks in parallel should be minimized. The two most important principles are therefore (1) reducing
the amount of interaction time between the processors and (2) reducing the amount of idle time
on the processors.

Problem 2

Problem 2a (5%)
For a 1D linear array of p processors, explain the following time usage model for broadcasting a
message of length m from one processor to all the other processors:

TP = (ts + twm)dlog2 pe,

where ts and tw are two constants, while d·e denotes the so-called ceiling function.

Suggested solution: As mentioned in Section 4.1.1 of the textbook, the technique of recursive
doubling can be used. The first step is to let the source processor send the message to another
appropriately chosen processor, such that the p processors are divided into two groups, each now
having a source processor. Then, the second step repeats the above action simultaneously within each
of the two groups. This recursive process continues until each group has one (or zero) processor, at
which time all the processors have already received the message.

The number of steps needed is dlog2 pe. The time used in each step (that is, for sending the
message from one processor to another) is ts + twm, where ts stands for the startup time and tw
stands for the per-data-value transfer time. Therefore, the total time usage is

TP = (ts + twm)dlog2 pe,

Problem 2b (5%)
Suppose there are p = 12 processors in the 1D linear array. Explain, step by step, the actual flow of
data between the processors.

1

Suggested solution: Suppose processor 0 is the source. During step 1, the message is sent from
processor 0 to processor 6. During step 2, the message is sent from processor 0 to processor 3, while
at the same time the message is also sent from processor 6 to processor 9. During step 3, the message
transfer simultaneously happens between the following four pairs:

processor 0→processor 1, processor 3→processor 4, processor 6→processor 7, proces-
sor 9→processor 10.

During step 4, the message transfer simultaneously happens between the following four pairs:

processor 1→processor 2, processor 4→processor 5, processor 7→processor 8, proces-
sor 10→processor 11.

Problem 2c (5%)
Let us now consider a 2D mesh of processors, where the number of rows is r and the number of
columns is s. Please derive the time usage model of one-to-all broadcast for this case.

Suggested solution: For a 2D mesh of processors, the entire one-to-all broadcast operation can
be carried out in two phases. During phase one, the source processor horizontally broadcasts the
message to all the processors on the same row. Then, during phase two, each source processor on
that row vertically broadcasts the message to all the processors on its column.

Since there are r rows and s columns, the total time usage is

TP = (ts + twm)(dlog2 re+ dlog2 se) .

Problem 3 (15%)
Suppose the environment variable OMP NUM THREADS is set to be 4. What will the following OpenMP
code segment produce as the output results (written out by printf)? Please explain your answer.

int *result_array = (int*)malloc(100*sizeof(int));
int i, num_threads;

#pragma omp parallel default(shared)
{
int thread_id = omp_get_thread_num();

if (thread_id==0)
num_threads = omp_get_num_threads();

#pragma omp for schedule(static,2)
for (i=1; i<=20; i++)
result_array[thread_id] += i;

}

for (i=0; i<num_threads; i++)
printf("Result from thread %d is %d\n",i,result_array[i]);

2

Suggested solution: Since the environment variable OMP NUM THREADS is set to be 4, four OpenMP
threads execute side-by-side in the parallel region. Moreover, the schedule(static,2) clause will
divide the iterations of the for-loop among the four threads as follows:

• Thread 0: i=1,2,9,10,17,18.

• Thread 1: i=3,4,11,12,19,20.

• Thread 2: i=5,6,13,14.

• Thread 3: i=7,8,15,16.

Therefore, the output results generated by printf are as follows:

Result from thread 0 is 57
Result from thread 1 is 69
Result from thread 2 is 38
Result from thread 3 is 46

Comment: Since the malloc function may not always give 0 as initial values to the allocated
array, it is safer to add the following loop immediately after the call to malloc:

for (i=0; i<100; i++)
result_array[i] = 0;

Problem 4
Floyd’s algorithm (shown below) can be used to solve the “all-pairs shortest paths” problem for a
weighted graph, whose n×n adjacency matrix is denoted by A.

1. procedure FLOYD ALL PAIRS SP(A)
2. begin
3. D(0) = A;
4. for k := 1 to n do
5. for i := 1 to n do
6. for j := 1 to n do
7. d(k)

i, j := min
(

d(k−1)
i, j ,d(k−1)

i,k +d(k−1)
k, j

)
;

8. end FLOYD ALL PAIRS SP

Problem 4a (10%)
Suppose the n×n adjacency matrix A is divided among p processors by a 1D row-wise block parti-
tioning. Describe in detail the communication operations that will be needed in an MPI parallelization
of Floyd’s algorithm. (You don’t have to write the entire MPI program.)

3

Suggested solution: At the beginning of each k-iteration, all the MPI processes should be able to
identify the rank (say, row k owner) of the MPI process that has row k of A in its responsibility.
Then, the following collectiv MPI call is invoked on each process:

MPI_Bcast (buffer, n, MPI_DOUBLE, row_k_owner, MPI_COMM_WORLD);

Note, on the MPI process whose rank equals row k owner, the pointer variable buffer should point
to the actual row (inside the process’ assigned local piece of A) that corresponds to row k of the
global matrix A. On all the other MPI processes, buffer should point to an assistant 1D array that
is to receive row k from the source MPI process. Thereafter, the local computation per MPI process
can proceed independently for this k-iteration.

Problem 4b (15%)
Derive the time usage model TP(n, p) of the MPI parallelization based on a 1D row-wise block
partitioning.

Suggested solution: From Problem 2a we know that the cost of a single one-to-all broadcast of n
values is

(ts + twn) log p.

The local computation cost per MPI process in each k-iteration is

n2

p
.

Therefore, recalling that in total n iterations are needed, we can get

TP(n, p) = n
(
(ts + twn) log p+

n2

p

)
.

Problem 4c (10%)
Derive the associated isoefficiency function.

Suggested solution: By definition we have

TO = pTP−W.

Using the above formula for TP(n, p), while remembering that W = n3, we can arrive at

TO = tsnp log p+ twn2 p log p.

With respect to maintaining a constant level of parallel efficiency, the first term on the right-hand
side of the above formula yields

W = Knp log p ⇒ W = Θ((p log p)1.5)

whereas the second term yields

W = Kn2 p log p ⇒ W = Θ((p log p)3)

At the same time, since the maximum allowed number of MPI processes for a 1D partitioning of
matrix A is n, the degree of concurrancy consideration requires that

n≤ p ⇒ W ≥ p3

Therefore, the overall asymptotic isoefficiency function is Θ((p log p)3).

4

Problem 5
Let A denote an n× n matrix, whereas b and y are two vectors of length n. The Gauss elimination
algorithm can be described as follows:

1. procedure GAUSSIAN ELIMINATION (A, b, y)
2. begin
3. for k := 0 to n−1 do /* Outer loop */
4. begin
5. for j := k+1 to n−1 do
6. A[k, j] := A[k, j]/A[k,k]; /* Division step */
7. y[k] := b[k]/A[k,k];
8. A[k,k] := 1;
9. for i := k+1 to n−1 do
10. begin
11. for j := k+1 to n−1 do
12. A[i, j] := A[i, j]−A[i,k]×A[k, j]; /* Elimination step */
13. b[i] := b[i]−A[i,k]× y[k];
14. A[i,k] := 0;
15. endfor; /* Line 9 */
16. endfor; /* Line 3 */
17. end GAUSSIAN ELIMINATION

Problem 5a (10%)
Write a serial C function

void gauss_elim(double **A, double *b, double *y)

that implements the serial Gauss elimination algorithm.

Suggested solution:

void gauss_elim(double **A, double *b, double *y)
{
int i,j,k;

for (k=0; k<n; k++) {

for (j=k+1; j<n; j++)
A[k][j] = A[k][j]/A[k][k]; /* Division step */

y[k] = b[k]/A[k][k];
A[k][k] = 1;

for (i=k+1; i<n; i++) {
for (j=k+1; j<n; j++) {

A[i][j] = A[i][j]-A[i][k]*A[k][j]; /* Elimination step */
}
b[i] = b[i]-A[i][k]*y[k];

5

A[i][k] = 0;
}

}
}

Comment: Since the value of n is not passed as an input argument to the gauss elim function,
we have to assume that there is a global variable named n.

Problem 5b (15%)
Parallelize the serial C function with help of OpenMP. Discuss the quality of your OpenMP paral-
lelization with respect to overhead and load balancing.

Suggested solution: The most important observation is that the outermost k-iterations have to be
executed in sequence, that is, they cannot be parallelized. Another important observation is that the
i-iterations can be parallelized.

void gauss_elim(double **A, double *b, double *y)
{
int i,j,k;

#pragma omp parallel default(shared) private(i,j,k)
for (k=0; k<n; k++) {

#pragma omp for schedule(static)
for (j=k+1; j<n; j++)
A[k][j] = A[k][j]/A[k][k]; /* Division step */

#pragma omp single
{

y[k] = b[k]/A[k][k];
A[k][k] = 1;

}

#pragma omp for schedule(static) private(j)
for (i=k+1; i<n; i++) {
for (j=k+1; j<n; j++) {

A[i][j] = A[i][j]-A[i][k]*A[k][j]; /* Elimination step */
}
b[i] = b[i]-A[i][k]*y[k];
A[i][k] = 0;

}

}
}

Comments: The reason of having a parallel region that encapsulates the outermost for-loop is to
reduce the overhead that is related to the master thread repeatedly spawning and terminating other
threads. At the same time, it is very important to wrap

6

y[k] = b[k]/A[k][k];
A[k][k] = 1;

inside the single (or master) directive. This is to avoid any race condition.

7

