UNIVERSITY OF OSLO

Faculty of mathematics and natural sciences

Examination in INF3470/4470 — Digital signal processing
Day of examination: December 10th, 2014
Examination hours: 14.30-18.30
This problem set consists of 7 pages.
Appendices: None
Permitted aids: None

Please make sure that your copy of the problem set is complete before you attempt to answer anything.

Problem 1 Frequency domain analysis

a) Find the DC gain of a 3 -point filter whose impulse response is given as $h[n]=\{\alpha, \beta, \alpha\}$ such that it completely blocks the normalized frequency $F=\frac{1}{3}$ and passes the normalized frequency $F=0.125$ with unity gain, where $F=1$ is the Nyquist frequency.
b) A system is described by $y[n]=x[n]+2 x[n-1]+3 x[n-2]$.

1. Find $H[F]$ of the system. Obtain the DC gain and high frequency gain of the system.

1 p .
2. Find its impulse response $h[n]$.

Problem 2 Filter Concepts

a) Given in Figure 1 is the pole-zero plot of the transfer function $H[z]$ of four filters A, B, C and D respectively. All filters are causal and the radius of the circle in complex plane is $|z|=1$.
Identify the characteristics of each filter from the respective options and reproduce and complete the table below.

Characteristics:

1. Stability: Unstable, Marginally stable, Stable
2. Phase response: Minimum phase, Mixed phase, Maximum phase
3. Magnitude response: Low pass filter, High pass filter, Bandpass filter, Notch filter, Comb filter, All pass filter, Digital resonator.
4. Type of filter: FIR, IIR.

Reproduce and complete the table below.

Filters \rightarrow Bilter Characteristics \downarrow	Filter A	Filter B	Filter C	Filter D
Stability				
Phase response				
Magnitude response				
Type of filter				

Filter A

Filter B

- - Zero

Filter C

Filter D

Figure 1: Pole-zero plots

Problem 3 Z - Transform

a) Show that the Z transform does not exist for the discrete signal $x[n]=1$, for $-\infty \leq n \leq \infty$.
b) Prove the following derivation property of the two-sided Z transform:

$$
\frac{d}{d z} X(z)=-\frac{\mathcal{Z}\{n x(n)\}}{z}
$$

where $X(z)=\mathcal{Z}\{x(n)\}=\sum_{n=-\infty}^{\infty} x[n] z^{-n}$. Here \mathcal{Z} denotes the Z transformation operator.
c) The Z transform $X[z]$ of a causal discrete signal $x[n]$ is

$$
X[z]=\frac{10 z^{3}+40 z}{z\left(z^{2}-2 z-3\right)}
$$

1. Find the poles and zeros of $X[z]$ and give their order.
2. Use a suitable method (residue method or partial fraction decomposition) to obtain the complete expression for $x[n]$. Evaluate $x[0], x[1]$ and $x[2]$.
3. Use synthetic long division method (power series expansion) to obtain the values of $x[0], x[1]$ and $x[2]$ and confirm the result you have obtained in 2 .

Problem 4 The DFT

a) The four-point DFT of a sequence $x[n]$ is given as

$$
X[k]=\sum_{n=0}^{3} x[n] W_{4}^{n k}=1+W_{4}^{k}+2 W_{4}^{2 k}-W_{4}^{3 k}
$$

Find $\mathrm{x}[\mathrm{n}]$. (Show your reasoning).
b) A four-point sequence $z[n]$ is given as the circular flipped version of $x[n]$ as in a), i.e.

$$
z[0]=x[0], z[1]=x[3], z[2]=x[2], \quad \text { and } z[3]=x[1] .
$$

The sequence $z[n]$ is then zero-interpolated by a factor 3 to form the 12 -point sequence $w[n]=z^{\uparrow}[n / 3]$.
Find the complex values of the first six DFT-coefficients of this sequence, i.e.

$$
W[k]=\operatorname{DFT}\{w[n]\}, \quad k=0 \ldots 5
$$

(Show you reasoning).

Problem 5 IIR-filter

A causal IIR filter with one real pole $z_{p} \in \Re$ has the impuls response:

$$
\begin{equation*}
h[n]=\alpha^{n} u[n], \quad 0<\alpha<1 . \tag{1}
\end{equation*}
$$

a) Given the system with the impulse response $h[n]$, find the system function $H(z)$ together with the ROC. Indicate the pole location in a pole-zero plot.
b) Find the system function $G(z)$ together with the ROC for the system with (complex) impulse response

$$
g[n]=h[n] e^{j \frac{\pi}{2} n}
$$

where $h[n]$ is given in (1).
Indicate the pole location in a pole-zero plot.
c) Find the system function $H^{\prime}(z)$ together with the ROC to the system with impulse response given as

$$
h^{\prime}[n]=h[n] \cos \left(\frac{\pi}{2} n\right),
$$

where $h[n]$ is given in (1).
Indicate the pole locations in a pole-zero plot.
Explain the functioning of the systems $h[n]$ og $h^{\prime}[n]$ interpreted in the frequency domain.

Problem 6 Sampling and Filter Design

a) 1. Plot the magnitude response of an ideal low pass filter. In the same plot, sketch the response of a practical low pass filter and label the different frequency bands.
2. Find the impulse response $h[n]$ of an ideal low pass filter. What is the difficulty in implementing it practically? What is a reasonable practical implementation of this filter?
3. What is Gibbs effect? Draw a suitable sketch to demonstrate it. As a filter designer, what necessary steps would you take to minimize Gibbs effect? Draw suitable sketches to illustrate how the steps taken by you affect the magnitude response of the filter?
4. What is the gain in dB of a filter if its output voltage is 10 times the input voltage?
b) A given sinusoid signal $x(t)$ in time t is given as $x(t)=\sin (10 \pi t+\pi / 4)$.

Make suitable sketches (as applicable) to demonstrate aliasing, undersampling, oversampling, Nyquist frequency and folding when the signal is sampled at frequencies:

1. $f_{1}=2.5 \mathrm{~Hz}$
2. $f_{2}=50 \mathrm{~Hz}$
3. $f_{3}=10 \mathrm{~Hz}$.

Formulas

Cosine values of angles in radians

Angle θ in radians	$\cos (\theta)$
0	1
$\frac{\pi}{6}$	0.866
$\frac{\pi}{4}$	0.7071
$\frac{\pi}{3}$	0.5
$\frac{\pi}{2}$	0
$\frac{2 \pi}{3}$	-0.5
$\frac{5 \pi}{6}$	-0.866
π	-1

Basic relations:

$$
\begin{aligned}
\sin (\alpha \pm \beta) & =\sin \alpha \cos \beta \pm \cos \alpha \sin \beta \\
\cos (\alpha \pm \beta) & =\cos \alpha \cos \beta \mp \sin \alpha \sin \beta \\
\sin 2 \alpha & =2 \sin \alpha \cos \alpha \\
\cos 2 \alpha & =\cos ^{2} \alpha-\sin ^{2} \alpha \\
\sin \alpha+\sin \beta & =2 \sin \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
\sin \alpha-\sin \beta & =2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
\cos \alpha+\cos \beta & =2 \cos \frac{\alpha+\beta}{2} \cos \frac{\alpha-\beta}{2} \\
\cos \alpha-\cos \beta & =-2 \sin \frac{\alpha+\beta}{2} \sin \frac{\alpha-\beta}{2} \\
\cos ^{2} \alpha+\sin ^{2} \alpha & =1 \\
\cos \alpha & =\frac{1}{2}\left(e^{\jmath \alpha}+e^{-\jmath \alpha}\right) \\
\sin \alpha & =\frac{1}{2 \jmath}\left(e^{\jmath \alpha}-e^{-\jmath \alpha}\right) \\
\sum_{n=0}^{N-1} a^{n} & = \begin{cases}N & \text { for } a=1 \\
\frac{1-a^{N}}{1-a} & \text { otherwise }\end{cases} \\
a x^{2}+b x+c=0 & \Leftrightarrow x_{ \pm}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
\end{aligned}
$$

Convolution:

$$
y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=-\infty}^{\infty} x[n-k] h[k]=h[n] * x[n]
$$

Discrete-time Fourier transformation (DTFT):

$$
\begin{array}{ll}
\text { Analysis: } & X(\Omega)==\sum_{n=-\infty}^{\infty} x(n) e^{-\jmath \Omega n} \\
\text { Synthesis: } & x[n]=\frac{1}{2 \pi} \int_{-\pi}^{\pi} X(\Omega) e^{\jmath \Omega n} d \Omega
\end{array}
$$

Discrete Fourier transformation (DFT):

$$
\begin{array}{ll}
\text { Analysis: } & X[k]=\sum_{n=0}^{N-1} x[n] e^{-\jmath 2 \pi k n / N}, \quad 0 \leq k \leq N-1 \\
\text { Synthesis: } & x[n]=\frac{1}{N} \sum_{k=0}^{N-1} X[k] e^{\jmath 2 \pi k n / N}, \quad 0 \leq k \leq N-1
\end{array}
$$

z-transformation:

$$
\text { Analysis: } \quad X(z)=\sum_{n=-\infty}^{\infty} x[n] z^{-n}
$$

