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Examination in INF3470/4470 � Digital signal processing
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Examination hours: 09:00 � 13:00

This problem set consists of 9 pages.

Appendices: None

Permitted aids: None

Please make sure that your copy of the problem set is
complete before you attempt to answer anything.

Note 1: All numbers and �gure axes should have units.
Note 2: Read through the whole exercise set before you start!

Problem 1 Z-transform (14 p.)

a) A causal, linear, time-invariant system is given by y[n] = y[n−1]+y[n−
2] + x[n− 1].

• Determine the system function H(z). Justify your answer. 1 p.

• Determine the poles and the zeros of the system, and indicate
their location in a pole-zero plot. Justify your answer. 2 p.

• What is the region of convergence (ROC)? Indicate the ROC in
the pole-zero plot. Justify your answer. 1 p.

b) Show that the z-transform of x[n] = anu[n] is X(z) = 1/(1 − az−1).
What is the ROC of X(z)? Justify your answer. 2 p.

c) Find the impulse response h[n] of a causal system with

H(z) =
1 + z−1

(1− 1
2
z−1)(1− 1

4
z−1)

2 p.

d) We have the signal x[n] = 12 · 0.5n(u[n+ 1]− u[n− 3]).

• Sketch x[n]. Have clear x- and y-axis values. 1 p.

• Sketch both x[−n] and x[n+ 2]. Have clear axis values. 1 p.

• Sketch x[−n+ 2]. Have clear axis values. 1 p.

e) Consider a system with impulse response h[n] = {2,−4, 2}. What is the
output y[n] if we send the signal x[n] = {3, 0, 4, 1} into this system?

(Continued on page 2.)
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• Find y[n] by staying in the time domain. Show full calculation. 1 p.

• Calculate y[n] by converting to the z-transform domain. 2 p.

Problem 2 Mixed problems (9 p.)

a) Petter is bored while waiting at a bus stop. He decides to count the
number of Hertz rental cars he sees passing by him. While waiting
twenty minutes for his bus to come, he spots six Hertz-cars. What
frequency does this correspond to in Hz? 1 p.

b) Petter is playing around with an acoustical transducer that transmits
a short sound wave x1 with sampling frequency Fs. This sound wave
x1 is sent from the transducer towards an object. It hits the object
and is re�ected back towards the transducer again. Petter registers the
received signal x2. It looks like a delayed and slightly noisy version
of x1. Explain how Petter can use the following equation to �nd the
distance to the object based on the output signal x1[n], the received
signal x2[n], and the wave speed v. 2 p.

rx1x2 [l] =
∞∑

n=−∞

x1[n]x2[n− l] = x1[l] ? x2[−l], −∞ < l <∞

c) Petter continues to play around with his acoustical transducer and
transmits the sound signal x[n] seen in Figure 1. It has a ten second
duration and increases linearly in frequency up to 10 Hz. Petter then
sends this signal through a �lter with the magnitude response shown in
Figure 2. Sketch the resulting signal y(nT ) after the signal x(nT ) has
passed through the �lter. Have the same x- and y-axes as in Figure 1. 1 p.

Figure 1: Signal x(nT ) used in c). T is the time interval between samples.

d) Is y[n] = nx[n] time invariant? Justify your answer. 1 p.

e) We have a continuous signal x(t) = 10 sin(2πF1t) + sin(2πF2t), where
F1 = 1 Hz and F2 = 6 Hz. It is sampled for eight seconds using a 20
Hz sampling frequency. The resulting x[n] is normalized and shown in
Figure 3. This signal is then sent through a �lter, and y[n] is the

(Continued on page 3.)
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Figure 2: Magnitude response of the �lter used in c)

Figure 3: Signal x[n] used in e)

Figure 4: Filtered and normalized signals by using either �lter A, B, C or D

resulting output signal. Figure 4 shows the �ltered signal after x[n]
has been sent through either �lter A, B, C or D, and then normalized.
Figure 5 shows the seven possible �lters. Determine which of these are
�lters A, B, C and D and justify your answers. 4 p.

(Continued on page 4.)
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Figure 5: Seven di�erent �lters numbered 1-7. Four of them were used to
make the �ltered signals presented in Figure 4.

(Continued on page 5.)
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Problem 3 Structures for discrete-time sys-

tems (8 p.)

Figure 6: Direct form I structure for second order IIR system.

a) Given a second order system

H(z) =
1 + z−1 + 0.75z−2

1− 2.5z−1 + 5z−2

and its corresponding Direct form I structure of �gure 6, �nd the values
of b0, b1, b2, a1, a2 2 p.

b) Sketch the transposed direct form I of the system. 2 p.

c) Direct form I structures are called �zeros �rst realizations". Direct form
II structures have poles �rst. Sketch a direct form II realization of the
system. Comment on the advantage(s) compared to Direct form I. 2 p.

Figure 7: Direct form structure for a FIR system.

d) A general FIR �lter can be realized using a FIR direct form, as in �gure
7. A hardware implementation of a second order FIR system using FIR
direct form, requires 3 multiplication blocks and 2 addition blocks. Now
assume that the second order FIR �lter has linear phase. Sketch a FIR
linear phase realization requiring only 2 multiplication blocks and 2
addition blocks. 2 p.

(Continued on page 6.)
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Problem 4 Filter design (12 p.)

You have been given the task to design a lowpass �lter to remove noise with
frequency higher than 4 MHz from a digital signal sampled at Fs = 10MHz.
The original signal, without noise, is a bandlimited signal in the range 1− 2
MHz. It is of utmost importance that you do not distort the original signal,
and in addition, it is preferable with a short �lter. The transition band
should not exceed 1 MHz. The ripple is maximally δp = 0.02 in the passband
and maximally δs = 0.01 in the stopband.

a) • Calculate the stopband edge frequency in normalized frequency, ωs.
1 p.

• Calculate the passband edge frequency in normalized frequency,
ωp. 1 p.

b) Sketch the low-pass �lter using normalized frequency axes and indicate
δp, δs, ωs and ωp on the �gure. Make sure to add all axis labels. 2 p.

c) You are now going to design a FIR �lter using �xed windows. Using
table 1, which windows can you use for your design? Explain your
answer. 1 p.

Window
name

Side
lobe
level
[dB]

Mainlobe
width

Transition
band width
(∆ω)

Ripple
level
(δp ≈ δs)

Ap
[dB]

As
[dB]

Rectangular −13 4π/L 1.8π/L 0.09 1.57 21

Bartlett −25 8π/L 6.1π/L 0.05 0.87 26

Hann −31 8π/L 6.2π/L 0.0063 0.11 44

Hamming −41 8π/L 6.6π/L 0.0022 0.038 53

Blackman −57 12π/L 11π/L 0.0002 0.0035 74

Table 1: Characteristics of �xed windows used for FIR �lter design. L
represents the length of the �lter's impulse response.

d) What is the smallest �lter order, M , you can achieve? 1 p.

e) If the �lter requirement is changed to have a narrower transition band
of just 500 kHz, what e�ect will this have on the �lter length? 1 p.

f) Will a �lter designed by this procedure always have a linear phase?
Explain your answer. 1 p.

(Continued on page 7.)
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g) You are considering to use an IIR �lter instead. What are the main
advantages and disadvantages of using an IIR �lter 2 p.

h) The Butterworth IIR lowpass �lter is based on the expression

|HB(jΩ)|2 =
1

1 + (Ω/Ωc)2N
, N = 1, 2, . . .

Use this equation to �nd an expression for Ω−3dB (the frequency for
which HB(jΩ) has dropped 3dB). Assume that 103/10 ≈ 2. 2 p.

Problem 5 DFT and Convolution (6 p.)

Assume the following discrete signals with corresponding DFTs:

x1[n] = {0, 0, 1, 0, 1, 0}, x1[n]
DFT↔
N X1[k]

x2[n] = {0, 0, 0, 0, 0, 1}, x2[n]
DFT↔
N X2[k]

a) Find y[n] when y[n]
DFT↔
N Y [k] and Y [k] = X1[k]X2[k]. You may assume

N = 6. 2 p.

b) Assume the following signals: x3[n] = {1,−3, 0, 2} and x4[n] =
{0, 1, 2,−1, 0, 1}.

• Calculate the linear convolution x3[n] ∗ x4[n]. 1 p.

• Calculate the 6 point circular convolution x3[n] 6©x4[n]. 1 p.

c) Explain the reasons for the di�erent results in b) and c). How long
must the circular convolution be in order for the circular and linear
convolution to provide the same result. 1 p.

d) Explain why we are sometimes applying zeropadding to a signal
before DFT (keywords: �ltering, convolution, frequency sampling,
visualization, new information). 1 p.

(Continued on page 8.)
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Formula sheet

Basic relations:

sin(α± β) = sinα cosβ ± cosα sinβ

cos(α± β) = cosα cosβ ∓ sinα sinβ

sin 2α = 2 sinα cosα

cos 2α = cos2 α− sin2 α

sinα+ sinβ = 2 sin
α+ β

2
cos

α− β
2

sinα− sinβ = 2 sin
α+ β

2
sin

α− β
2

cosα+ cosβ = 2 cos
α+ β

2
cos

α− β
2

cosα− cosβ = −2 sin
α+ β

2
sin

α− β
2

cos2 α+ sin2 α = 1

cosα =
1

2
(ejα + e−jα)

sinα =
1

2j
(ejα − e−jα)

N−1∑
n=0

an =

{
N for a = 1
1−aN
1−a otherwise

ax2 + bx+ c = 0 ⇔ x± =
−b±

√
b2 − 4ac

2a

Linear convolution:

y[n] = x[n] ∗ h[n] =

∞∑
k=−∞

x[k]h[n− k] =

∞∑
k=−∞

x[n− k]h[k] = h[n] ∗ x[n]

Circular convolution:

y[n] = x[n] N©h[n] =

N−1∑
k=0

x[k]h[< n−k >N ] =

N−1∑
k=0

x[< n−k >N ]h[k] = h[n] N©x[n]

Continuous Time Fourier Transform (CTFT):

Analysis: X(jΩ) =

∫ ∞
−∞

x(t)e−Ωtdt

Synthesis: x(t) =
1

2π

∫ ∞
−∞

X(Ω)eΩtdΩ

Continuous Time Fourier Series (CTFS):

Analysis: ck =
1

To

∫
T0

x(t)e−kΩ0tdt

Synthesis: x(t) =
∞∑

k=−∞
cke

kΩ0t

(Continued on page 9.)
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Discrete Time Fourier Series (DTFS):

Analysis: ck =
1

N

N−1∑
n=0

x(n)e−
2π
N
kn

Synthesis: x[n] =
N−1∑
k=0

cke
 2π
N
kn

Discrete Time Fourier Transform (DTFT):

Analysis: X(ejω) =

∞∑
n=−∞

x(n)e−ωn

Synthesis: x[n] =
1

2π

∫
2π
X(ejω)eωndω

Discrete Fourier Transform (DFT):

Analysis: X[k] =

N−1∑
n=0

x[n]e−j2πkn/N , 0 ≤ k ≤ N − 1

Synthesis: x[n] =
1

N

N−1∑
k=0

X[k]ej2πkn/N , 0 ≤ n ≤ N − 1

z-transform:

Analysis: X(z) =

∞∑
n=−∞

x[n]z−n


