Ch. 7: Dynamics
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Example: three link cylindrical robot

e Up to this point, we have developed a systematic
method to determine the forward and inverse
kinematics and the Jacobian for any arbitrary -~

. . e J
serial manipulator J?gl 2 i -
— Forward kinematics: mapping from joint variables »/l
rq

to position and orientation of the end effector ' ‘ U3

— Inverse kinematics: finding joint variables that 21
satisfy a given position and orientation of the end g
effector 2

— Jacobian: mapping from the joint velocities to the ¥
end effector linear and angular velocities Q) 91

e Example: three link cylindrical robot
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Dynamics Overview

While the kinematic equations describe the motion of the robot without
consideration of the forces that produces the motion.

The dynamics explicitly describe the relationship between force and motion

The dynamic of the robot is necessary to consider in the design of robots,
simulation and animation, and in the design of control algoritms

We want to come up with equations of motion for any nDOF system

— In general, this will consist of n coupled second order differential equations
These systems may be:

— Linear or nonlinear

— Conservative or nonconservative
We want to develop an expression of the form: q = f(q, t)

Once we have this, we can use it to choose an appropriate controller that
will put our dynamical system in a desired state (configuration)

The dynamics is important
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Euler-Lagrange Equations

e We can derive the equations of motion for any nDOF system by
using energy methods
— All we need to know are the conservative (kinetic and potential) and
non-conservative (dissipative) terms
e This is a shortcut to describing the motion of each particle in a rigid
body along with the constraints that form rigid motions

e For this, we need to first use virtual displacements subject to
holonomic constraints, then use the principle of virtual work, then
finally use D’Alembert’s Principle to derive the Euler-Lagrange
equations of motion

e But first, an example...
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Ex: 1DOF system

e Toillustrate, we derive the equations of motion for a 1DOF system
— Consider a particle of mass m

=

— Using Newton’s second law:
my =f —mg $ f
— Now define the kinetic and potential energies:

K:%my2 P = mgy

— Rewrite the above differential equation mg
o Leftside:

Cd, o do(1_,) doK o
my =—(my) = —my? |=—= —
dt dt oy | 2 dt oy

e Rightside:

p P
mg = —(mgy)= o
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Ex: 1DOF system

e Thus we can rewrite the initial equation:
d oK _. oP
dt oy oy \
e Now we make the following definition: /

L=K-P
e Liscalled the Lagrangian
— We can rewrite our equation of motion again: mg

doL oL
dt 8}/ ay -

e Thus, to define the equation of motion for this system, all we need is a
description of the potential and kinetic energies

=
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Euler-Lagrange Equations

e If we represent the variables of the system as generalized coordinates, then
we can write the equations of motion for an nDOF system as:

d oL oL _
dt oq; oq;

e We will come back to this, but it is important to recognize the form of the
above equation:
— The left side contains the conservative terms

— The right side contains the non-conservative terms
e This formulation leads to a set of n coupled 2"¥ order differential equations
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Ex: 1DOF system

e Single link, single motor coupled by a drive shaft

— 6., and 0 are the angular displacements of the shaft and the link respectively,
related by a gear ratio, r:

0 =rb,

m
— Start by determining the kinetic and potential energies:

K = 1Jm9’m2 + 1J,9’,2
2 2

_ %(erm +J, )9,2

P :%(1—0039,)

Mgl

— J_ and J, are the motor/shaft and link inertias respectively and M and L are the
mass and length of the link respectively
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Ex: 1DOF system

e Let the total inertia, J, be defined by:

J=r2J_+J,
e Now write the Lagrangian:
L = %Jé,z —%(1 —cos,)

e Thus we can write the equation of motion for this 1DOF system as:
. Mgl .
JO + —gsm 0=t
/ 2 / /

e The right side contains the non-conservative terms such as:
— The input motor torque: [ = rec,,
— Damping torques: B = er + B/

e Therefore we can rewrite the equation of motion:

J6, + BO, +%sine, = u
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Holonomic constraints

e Motivation: reduce the number of DOFs of the system

— i.e. reduce the number of coordinates necessary to fully describe a system of
particles

* Consider a set of kindependent particlesr,, r,, ..., r;:
— Requires 3k generalized coordinates to fully describe the set

A

1

9
Tk

e If we add constraints, the number of DOFs (and hence generalized
coordinates) is reduced
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Holonomic constraints

e  Without constraints, we can simply write: mr. = f;
— i.e. kuncoupled differential equations

e If there are constraints on the motion of the particles, we must also consider
constraint forces

e Example, consider a system of two particles with positionsr,, r,
— If there are no constraints, we need 6 parameters to fully describe this system
— Consider the following constraint: the distance between the particles is constant

— Now we can write the equations by finding all the forces that will ensure the constraints are

met
H’? _rZHZ\/(’? _rz)T(r1 —I’2) =L
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Virtual displacements

e Definition: for a system of k particles with m holonomic constraints, the set
of virtual displacements is the set: Olyy..., 0,

— These displacements are also consistent with the holonomic constraints
e Ex: again, consider a system of two particles that has a fixed distance

("1 _rz)T(’? _rz):Lz

— Now supposed that both r, and r, are perturbed by the virtual displacements Jr,
and Jr,

— Thus, the same constraint has to be satisfied:
T 2
(r,+or,—r,—or,) (r,+—r,—6r,) =L
— Rearranging this gives:

(ry—ry+ 6 —ry) (r,—ry + 1, — o1, ) = L2
= (1= 1,) (= r,)+ 2, =1, ) (6, = 6, )+ (6, — o, ) (6, — o) = L°
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Virtual displacements

e If we ignore second order terms in the virtual displacements:
(=) (ry=ry)+2(r, = 1,) (61, = o, ) = L2
e Now our initial constraint is:
(ﬁ _rz)T(r1 —I’2)= L*
2(r,—r,) (61, - 6r,)=0

e This says that in order for the virtual displacements to satisfy the holonomic

constraints, they must be orthogonal to the constraint forces
e For example:

e Therefore:

5?'9
® @ o @
o7 1 5?'2 a7 1

i ‘ : Oslo
The Interventional Centre B University Hospital




Principle of virtual work

e So, if, due to the holonomic constraints on a system of particles, the
coordinates of the particles can be fully defined by a set of generalized
coordinates, then we can write the set of virtual displacements as:

I, Or, .
or, = Loq., i=1...k
fz—;@q/‘ j

— There are no constraints on the generalized coordinates, so there are no
constraints on the virtual displacements of the generalized coordinates

e Now suppose each particle is in equilibrium
— Thus the net force on each particle is zero
— This implies that the work done by each set of virtual displacements is zero

k
M F'or =0
i=1

e F;is the total force acting on particle i
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Principle of virtual work

e At the beginning of this discussion, we said that a system with
holonomic constraints has two sets of forces acting on it:

— External forces, f;
— Forces that impose the constraints, f°

e |f the work done by the constraint force is zero, we can write:

k T
Zf,a or =0
i=1

/

— This is true whenever the constraint force between particles is directed along
the vector connecting the two particles

e j.e. the virtual displacements are orthogonal to the constraint forces

e Thus when the work done by the constraint forces is zero, we can also
k
say that: T
Y fior =0
i=1
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Principle of virtual work

e This is called the principle of virtual work:

— The work done by external forces corresponding to any set of virtual
displacements is zero!

— Only true if the work done by the constraint forces is zero

e Which is only true if the constraint forces are directed along the vector
connecting two particles

e In this case the virtual displacement vector will be orthogonal to the constraint
force vector

— This is by definition of the virtual displacements and the fact that they also must satisfy
the holonomic constraints

e Ex: again, consider two particles that are constrained by: (r,—r,) (r,—r,)=L?
— The constraint force must be along the vector connecting the two
— Assume that there is a rigid wire connecting the two
— Thus the constraint force acting on the first particleis: * =c(r,-r,)
— And clearly the force on the second particleis: 7 =—c(r,-r,)
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Principle of virtual work

e Thus we can write the work done by the constraint forces as:
f18T5r1 +fzaT5r2 - C(I’1 _rz)T5r1 _C(’? _rz)T5r2

.
= C(I’1 _rz) (5”1 —§I’2)
e But we already showed that this is zero since the virtual displacements
are also consistent with the holonomic constraints

— Thus the work done by the constraint forces is zero

e Thus what we have shown is that for a system of points in which the
points are subjected to holonomic constraints, the principle of virtual
work says that the work done by the forces that maintain the holonomic
constraints is zero

e We can represent a rigid body as an infinite set of particles with an
infinite set of holonomic constraints

— Thus the principle of virtual work also holds in the case of rigid motion
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D’Alembert’s principle

e The previous discussion assumed that the system of particles was in
equilibrium
e To make this more general, we assume that the system is not in
equilibrium
— Thus adding an additional force will put the more general system in
equilibrium (D’Alembert’s Principle)
— This additional forceis: -p
e Where p; is the momentum of the i*" particle
— And we can include this as follows: )
Z(F: _pi)T&i =0

— We can again use the principle of virtual work to remove the constraint
forces from F; and this becomes:

i i
i=1

]

k k
£l or — D pior; =0
=1
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D’Alembert’s principle

e Note that the virtual displacements are not independent
— But the generalized coordinates are

e Thus we want to express this relationship in terms of the generalized
coordinates instead of the virtual displacements
— First, remember that:
= OF,
S = Loq., =1,k
/Z=1: oq;
— Substituting this in gives (for the first term):

k k n n

AL ED WAL Y
i1 o1 0q j =1

— Where the jt" generalized force Y is:

a r OF,
[//.: f; !
’ Z oq,
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D’Alembert’s principle

* The momentum of particleiis:  p, =myr,
e Therefore we can write the second term as:

K T K T LS .7 Or
Zpi 5’7:Zmi’7 5’7222'77/'”/ —q;
i i1 i—1 =1 oq;

J

e Now note that:

; r

d .T 8/’, .T O 7 d 8/’,
—| Ml =mr; +mir —
dt aq; aq,; dt| oq,

I

e Rearranging gives:

m;r; =——| M -mir —
oq; dt aq; at| oq;

e Remember that the holonomic constraints allows us to write the
coordinates of the particlesas: . — ’7(‘71’---,% ), i=1..k
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D’Alembert’s principle

e Differentiating this gives:

djon | on g
dt

oq; | “=0q,0q, "
e Recall the following
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D’Alembert’s principle

e Now that we know each term, we can rewrite this as follows:

i T@r _i{d|:m Tav,}_mvrav,}
II - dt i . i

i1 oq = oq I

e 2 i i
e Take the partial derivative of the kinetic energy with respect to the
generalized coordinates and their derivatives:

k k
Z I IT @V, 5K ZmiViT aV,
5‘7, i=1 aq; aqj i=1 aq;
e Therefore we can rewrite once more:

m;r; = .
i1 aq; dtoq; 0q,
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D’Alembert’s principle

e Putting this pack into our first equation for the work from
the fictitious force: . ! {d oK 6K}
o,

ZpiTgl? — Z
e Finally, combining this with the external forces:

L|d oK oK
2 ——— v, 9, =0
= |dtoq; oq;

e Since the virtual displacements of the generalized
coordinates are independent, we can say that each
coefficient of og; is zero: | .. .«

dt 6q;, 0oq,

v, j=1...,n
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Euler-Lagrange Equations

* If we assume that the generalized force y is the sum of an external force
and a force due to potential energy, we can simplify further
— Assume that there exists a potential energy function P(q) and external forces

Ut oP

— Then remembering the definition of the Lagrangian: L = K- P:

d oL oL
dtog, oq, '

— This is the Euler-Lagrange equation and it allows us to derive the equations
of motion for an nDOF system subject to holonomic constraints

; ‘ & Oslo
The Interventional Centre University Hospital




Dynamics Overview

e We want to come up with equations of motion for any
nDOF system
— In general, this will consist of n coupled second order ODEs

e These systems may be:
— Linear or nonlinear q= f(q’t)
— Conservative or nonconservative

e We want to develop an expression of the form:

e Once we have this, we can use it to choose an
appropriate controller that will put our dynamical
system in a desired state (configuration)
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Euler-Lagrange Equations

e We can derive the equations of motion for any nDOF system by
using energy methods
— All we need to know are the conservative (kinetic and potential) and
non-conservative (dissipative) terms
e |deally, the terms in the Euler-Lagrange equation are functions of
the generalized coordinates

e This is a shortcut to describing the motion of each particle in a rigid
body along with the constraints that form rigid motions

e For this, we need to first use virtual displacements subject to
holonomic constraints, then use the principle of virtual work, then
finally use D’Alembert’s Principle to derive the Euler-Lagrange
equations of motion
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Euler-Lagrange Equations

e |f we represent the variables of the system as generalized
coordinates, then we can write the equations of motion for an nDOF

system as: d oL oL .
dt oq; oq;

e Itisimportant to recognize the form of the above equation:
— The left side contains the conservative terms
— The right side contains the non-conservative terms

e This formulation leads to a set of n coupled 2" order differential
equations
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Kinetic Energy

e Need to define the kinetic energy for an n-link manipulator
e DH joint variables are the generalized coordinates

 The kinetic energy is a function that takes a vector of joint
velocities to a scalar

e The kinetic energy is the sum of two terms:

— A translational term equivalent to concentrating all the mass at the
center of mass

— Arotational term due to rotation about the center of mass

)
\; /'|
i
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Kinetic Energy

e For an arbitrary rigid body, the kinetic energy is:

K = 1mvTv + 1a)T[a)
2 2

— vis the linear velocity of the center of mass

— @is the angular velocity p-
— I'is the inertia tensor 20 A i
e expressed in the inertial (base) frame . ——

Ly
i ‘ \ Oslo A () ¢
The Interventional Centre University Hospital <88




Inertia

* First, we need to express the inertia in the body-attached frame
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Note that the rotation between the inertial frame and the body attached
frameiis just R

Note also the relationship between the angular velocity @ (in the inertial
frame) and the rotational transformation between the body attached frame
and the inertial frame:

S(w)=RR"
So the inertia in the inertial frame is related to the inertia in the body frame
by a similarity transform:

I =RIR"
e |is the inertia in the body attached frame
The inertia in the inertial frame is dependant upon the configuration
The inertia in the body attached frame is independent of configuration




Inertia

e |nertiais an intrinsic property of a rigid body
— In the body frame, it is a constant 3x3 matrix:

Ixx Ixy lxz
I:[Iij]: Ly 1y
/zx /zy Izz

— The diagonal elements are called the principal moments of inertia and are a
representation of the mass distribution of a body with respect to an axis of
rotation:

| = Irzdm = _mrzp(x,y,z)dv = ” r?p(x,y, z)dxdydz

e ris the distance from the axis of rotation to the particle
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Inertia

e The elements are defined by:

° N

[ l _ PRPEIN 2 d d
o (y vz )p(x,y,z)dx yaz principal

/ :::(xz +22)p(x,y, z)dxdydz >~ moments
of inertia

_ 1, = [[[(x?+ y?)o(x,y,z)dxdydz
p(x.y.2) is < i bl 2) i
the density

\

Io=1 =—[[[x X,V,Z)dxdydz
SRR L yplxy.z)xdy Cross

l,=1, :—::xz,o(x, y,z)dxdydz - products
of inertia

\ Iyz = Izy = —::yzp(x,y,z)dxdydz /
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Ex: uniform rectangular block

e Consider a uniform (amorphous) solid block with the
reference frame in the geometric center

c a A

_ I 0/2 bb/Z j :2 (y2 + Z2 )p(x, y,z)dxdydz T
cl2 ¢bl2 a .
:Ic /2 b/2( zz)x‘_jzpdydz m V |
L YA 2 ; :
a2 [ 4 2y L I T
2 [ Y3 - l,, = m(82 +b2) ’ )/I
b/2 = b >
cl2

B ci2( b 5 B 2 z° ocl/2 ¢ a
= p J'C/Z(—+z jdz —,oab(—z+—) . l, = —._:2.1/22 j N xyp(x Y, z)dxdydz
B @ 5 2\_ M (2 2 _[el2 pbl2 }/Xz al2 )
7192 (b e )_12(b +C) ~ len2)eiz o _alzpdde—O
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Ex: uniform cylinder

e Consider a uniform (amorphous) solid cylinder with
the reference frame in the geometric center

h12 (27 4
L= " rrzp X,y,z)rdrdfdz

T |
_ /2 J‘h/2 jzﬂ r1 dodz 1 \‘““=-—-._i_.-i~=““7
~ Jhi2 2=P) 4z i

2z h !.,JI" - [
e B ,0711’1 hi2 _( 5 )1 ) H/_,
_'O.[_h/z 4 dz = 2 Z‘—h/z = \p7t h 2!'1 R -
v \““--_-_—_-_.-.'.j)

1
=—mr’

2
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Kinetic energy of an n-link
manipulator

e We said that the kinetic energy of a rigid body is the sum of two terms:

K = 1mvTv + 1a)T[a)
2 2

* Noting the relation between the inertia tensor (inertial frame) and the
inertia matrix (body-attached frame), this becomes:

K = 1mVTV + 1a)TF\’II-'\’Ta)
2 2

e Similar to a set of particles, the total kinetic energy for an n-link
manipulator is the sum of the kinetic energy of each link:

K=> 1m.v.Tv. + 1a).TR./.R.Ta).
. 2 171 1 2 ] 171 ] ]
i=1
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Kinetic energy of an n-link
manipulator

Note that the rotational matrices are functions of the generalized
coordinates
— i.e. functions of the joint variables:

K= Z{%miviT\/i + %wiTRi (q)IiRi (Q)T 0):}
i=1
Lastly, we need a relation between the joint velocities and the linear and
angular velocity of the CM (Center of Mass) of each link

— This is simply the Jacobian:

Vi = Jv,- (q)q @; = Ja),- (q)q
e Thus we can rewrite the kinetic energy as a function of the joint
variables:

K- izn;‘{%miqTJVi (q)T Jv,- (q)q + %QTJ@, (Q)T R, (q)IiRi (q)T Ja),- (Q)Q}

( \ A%
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Kinetic energy of an n-link

manipulator
e Simplifying this gives:

Inertia matrix

e Properties of the inertia matrix:
— NnNXn
— Symmetric
— Positive-definite
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Potential energy of an n-link
manipulator

e For arigid manipulator, only potential energy is from gravity

e The potential energy of the it" link is found by assuming all mass is
concentrated at the center of mass

— letr_ be the position of the center of mass of the i*" link (in the inertial
frame)

— let g be the gravity vector in the inertial frame
n n
P = ZPI — ZmigTrci
i=1 i=1

e Potential energy is independent of the joint velocities
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Equations of motion

e Now we are finally ready to use the Euler-Lagrange formulation
doL oL __
dtoq;, oq; '

e Now we can write the Lagrangian as:

L=K~P=5d"D(a}i~Pla)= 52> 0,(akid, ~P(0)

j =1 i=1
e Now take the partial derivatives of the Lagrangian:

€T _ 8qk£ ;Z} ,,(q)qq,J——P()

aq, oq,

= ;dkj (9)g;
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Equations of motion

e Now take the partial derivatives of the Lagrangian:

E@ =2 diG,; + Z dquj

Jj=1

od,,

- delql +Zz—q q/

Jj=1i= i
e Partial with respect to the positions:

FoRE D Rl LI

aqk j =1 i=1 6qk 6qk
e Combining these back into the Euler-Lagrange equation:

od, 10d;|. . oP
Sa 33 %n -1 Blgg, 2

j=1 i aq/ aqk
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Equations of motion

e Lastly, we do a trick to simplify the second term

Simply because
ZZ{gdkj }q _Zz{adkf 8de }q q/ _, ofthe symmetry

= e} =ia |09, 0q; of the inertia matrix
e Therefore the second term can be rewritten as:

Zz{ad,q _;Zk}q __Zz{édkj od, }q%

j=1i=1 aq/ j=1i=1 aq/ aq/ aqk
e For simplicity, we make the following definition:

Cijk = —
2\ 0q; 0dq; 0q,

— ¢ are the Christoffel symbols

1 adkj 4 adki . adij)

e Define the gravity force on the k" link as:

Qk=£
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Equations of motion

e We now write the Euler-Lagrange equations for an n-link
manipulator:

ifi=j,theng”  ifi=jthengq,
N J \ /
e Y

centrifugal Coriolis
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Equations of motion

e Commonly, this is written as:

D(q)j +C(q.9)q+g(q)=7
e D(q) is the inertia matrix
e The C matrix is given as:

e And the gravity vector is:
9(@)=la@) a(@) - a,@f

e This holds for any n-link manipulator that has kinetic energy
defined by two terms and potential energy that is
independent of velocity
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summary

1. If we know the configuration, we can calculate the Jacobian
e [If we know the Jacobian, we know the velocities of each CM
2. Once we know the mass and inertia properties of each link and the

linear and angular velocities of each link, we can formulate the kinetic
energy (for the whole system)

3. If we know the forward kinematics and the mass of each link, we can
find the position of the CM
e We can calculate the potential energy

4. Once we have K and P, we can easily form L

5. To obtain the equations of motion we can:

e Take the partial derivatives with respect to the joint positions and velocities
(and time derivatives) and plug into the Euler-Lagrange formulation

e OrdetermineD, C,and g
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Ex: two-link cartesian manipulator

e m,and m, are the masses of the two links
e Generalized coordinates are the prismatic displacements
e By inspection:

. 1 - e
vi=J,q=|0 0{91} v.=J,q=\0 1{(?} ——
1 0] 9> 1 0™ ——
e Thus, the kinetic energy is: N [
K = %qT{Z md,"J, }q _ %qT i, T, +myd, T, 1 -
i=1
e And the inertia matrix is: N I
D(q) = m{

o o)™ 170" m] o
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Ex: two-link cartesian manipulator

The potential energy of the system is:

P(Q): ,Z::PI :g(m1 +m2)q1

Note that the inertia matrix is not a function of g o

— Therefore the partial derivatives are zero |

— Thus the Christoffel symbols are zero c— Tum

e We can write the equations of motions as:

DG +glq)=f 11
— Where the gravity vector is the partial of P:

_oP _ (m, +m,) —f—o 1
91—aq1—g 1 2’92_5(]2_ 71

Therefore, the equations of motion are:

(m, +m, )4, +9g(m, +m,)=f,

(mz)dz =1 7 ///A
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Ex: two-link elbow manipulator

e We need the linear and angular velocity of each

link:

v,=J,q=| L,cosgq,
0

V, = Jqu

=| L,cosq,+L_, cos(q1 + %)
0

The Interventional Centre

—L_sing, O]

0 {ﬂ
0 a,

L sing,—L,, sin(q1 + qz) L, sin(q1 +d, )_

Y2 X2

q
L., COS(Q1 + %) { -1}
0 9,
| -
'\A’
" qi X
L .
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Ex: two-link elbow manipulator

e Now the angular velocity of each link:

o' Lo,=4"J,(q) R(q)R(q) J, (a)d

The Interventional Centre

(cosq, —-sing, O] ‘cos(q, +q,) —sin(g,+q,) O]
sing, cosq, O R,(q)=| sin(g,+q,) cos(g,+q,) O
0 0 1 0 0 1
_Ixx,1 0 0 _Ixx,2 O O |
L= 0 0 O L= 0 0 O
0 0 Izz,1 | O O Izz,2_
0 0] . 0 0] .
0, =J,4=[0 0 P} 0, =J,4=0 0 {ﬂ
1 0 @2 11 9
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Ex: two-link elbow manipulator

 Thus the rotational component of the kinetic

energy is:
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Ex: two-link elbow manipulator

Thus, the total kinetic energy of the system is:

K = %qT{Z md,"d, +J,71d, }q
i=1

=—q' \mJd, J, +m,J, J, +1 +1
2q { 1 V4 2] 2 Vo Vo 1|:O 0:| 2|:1 1 q

And the inertia matrix can be written as:
D(q): |:d11 d12:|
d21 d22
— Where:
2 2 2 . .
d,=mL’+m, (L1 +L,,° +LL,,sin(g,)sin(q, +q,)+LL,,cos(qg,)cos(q, +q, ))+ I +1,
d,=m, (chz +LL_,sin(q,)sin(q, +q,)+L,L,,cos(qg,)cos(q, +q, ))+ l,

2
d22 = mchz "‘Iz
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Ex: two-link elbow manipulator

 Now since cosacosf + sinasinf = cos(a - f), we can rewrite
the elements of the inertia matrix:

dyy=mbo 2 +my(L2 + L2 +2L L, cos(q,))+ 1, +1,
d,=m, (chz +LL,,cos(g, ))+ l,
d22 = mch22 + I2

e We next determine the Christoffel symbols:

.. - 1]ody  ad, _adﬂ}_iadﬂ _

~

2| 6q, oq, aq,| 2 g,
Cig1 = 1< 5d12 + 8d11 - 5d12 = 1% = _m2L1I—c2 Sinc’z > fork=1
2109, 0Jq, Oq, 2 0q,

Cyppy = 1< odi, + 0di, _ 00y =-m,LL_,sing,
2 \ oq, 0q, oq,

/
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Ex: two-link elbow manipulator

We next determine the Christoffel symbols:

Ciiz = 1< 0 + 0y - 8d11} = 1 od,, =m,L.L,,sing,
210q, 0dq, 0q, 2 0q,
(M2:1¥Mﬂ+a%y_&m}zla%zzo
2|09, 0q, 0q, 2 0q,
o _1]ody ody, 0dy| _ 10dy
222 — - -
2199, 04q, 0q, 2 0q,

C(q,9)=
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C111

_C121

Thus we can write the C matrix:

C121 C1 22

}{Cm }
C122

C221 C222

(m,LL,,sing,)q,
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Ex: two-link elbow manipulator

e We next determine the potential energy:

P,=mgL._,sing,
P, =m,g(L,sing, +L_,sin(q, +q,))
e And the gravity vector:

P

8 = g = (mchl +m,L, )g cosq, +m,L,,g COS(% + 92)
1
OP
8, = =m,L.,g COS(% + %)
8%

e Combining each of these terms gives us the equations of motion:

d,.q, +0d,,q, +C,,,G,9, +C,,4:Q, +C»pQ, +g, =T,

. . . 2
d,4Q, +d5Q, +C1,Q, +9, =1,
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