Introduction to Robotics (Fag 3480) Vár 2010

Robert Wood (Harward Engineeering and Applied Sciences-Basis) Ole Jakob Elle, PhD (Modified for IFI/UIO) Førsteamanuensis II, Institutt for Informatikk Universitetet i Oslo Seksjonsleder Teknologi, Intervensjonssenteret, Oslo Universitetssykehus (Rikshospitalet)

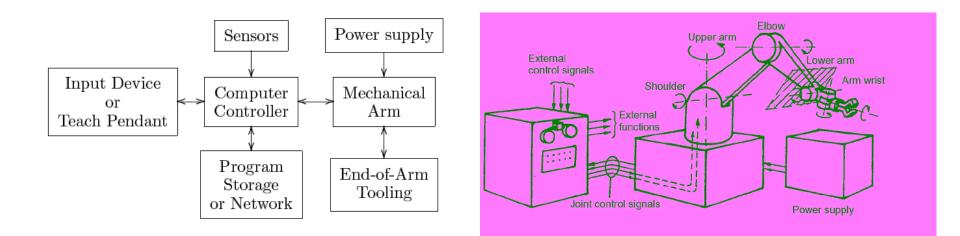
Ch. 2: Rigid Body Motions and Homogeneous Transforms

Industrial robots

High precision and repetitive tasks

Pick and place, painting, etc

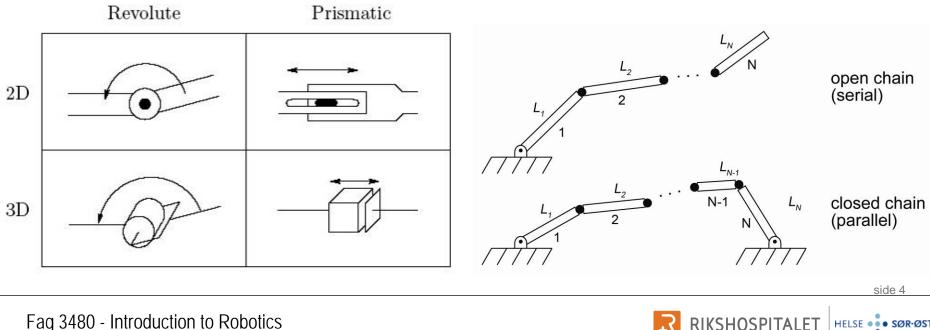
Hazardous environments



Representations

For the majority of this class, we will consider robotic manipulators as open or closed chains of links and joints

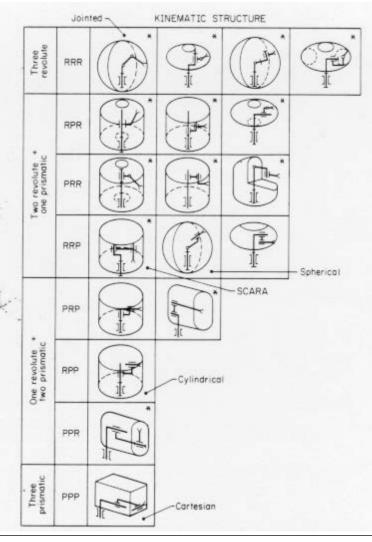
Two types of joints: revolute (θ) and prismatic (d)



HELSE

Fag 3480 - Introduction to Robotics

Arm configurations



- The most frequent arm configurations are :
- •Open kinematic chains :
 - •Jointed articulated or anthropomorphic (human-like arms) (RRR)
 - •Spherical (RRP)
 - •Scara (RRP)
 - •Cylindrical (RPP)
 - •Cartesian (PPP)
 - •Multi-joined (RRRRRR.....), Redundant configurations
- •Closed kinematic chains

HELSE

Definitions

End-effector/Tool

Device that is in direct contact with the environment. Usually very task-specific

Configuration

Complete specification of every point on a manipulator

set of all possible configurations is the configuration space

For rigid links, it is sufficient to specify the configuration space by the joint angles, $q = \begin{bmatrix} q_1 & q_2 & \dots & q_n \end{bmatrix}^T$

State space

Current configuration (joint positions q) and velocities \dot{q}

Work space

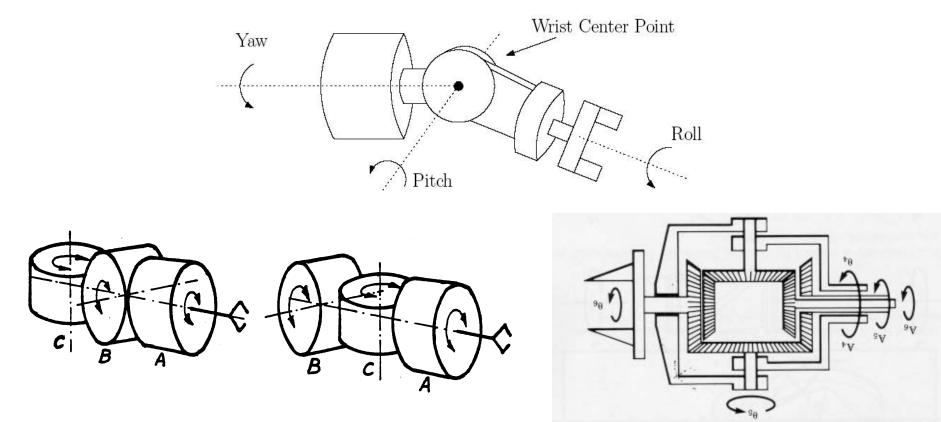
The reachable space the tool can achieve

Reachable workspace

Dextrous workspace

Common configurations: wrists

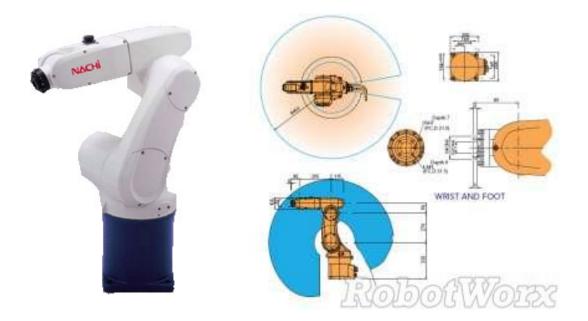
Many manipulators will be a sequential chain of links and joints forming the 'arm' with multiple DOFs concentrated at the 'wrist'



Common configurations: elbow manipulator

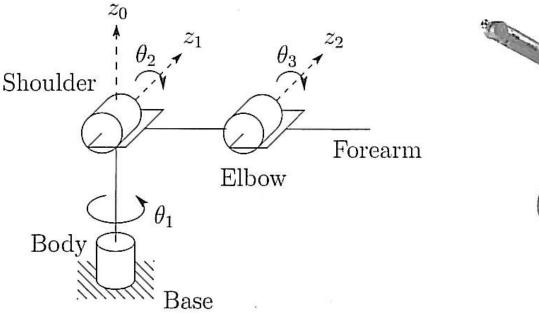
Anthropomorphic arm: ABB IRB1400 or KUKA

Very similar to the lab arm NACHI (RRR)



HELSE •

Antropomorphic arm (RRR)

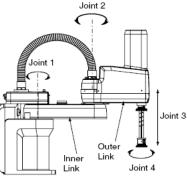


RIKSHOSPITALET HELSE • SØR-ØST

Fag 3480 - Introduction to Robotics

Common configurations: SCARA (RRP)

Adept Cobra s600/s800 Robot User's Guide



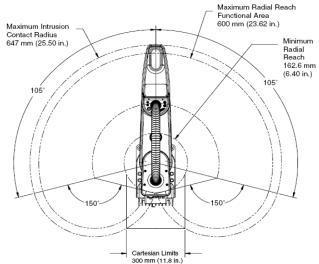
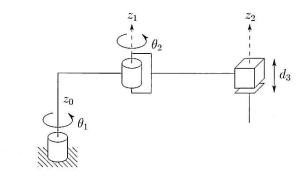
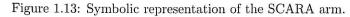
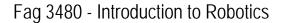


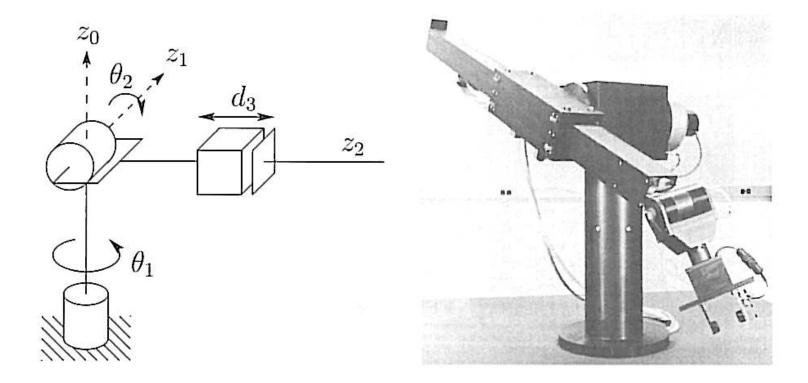
Figure 8-7. Adept Cobra s600 Robot Working Envelope

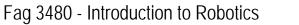






Spherical Manipulator (RRP)





Common configurations: cylindrical robot (RPP)

workspace forms a cylinder

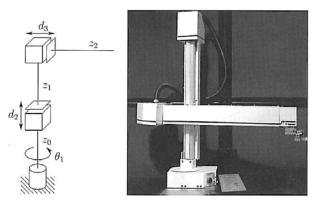


Figure 1.15: The Seiko RT3300 Robot cylindrical robot. Cylindrical robots are often used in materials transfer tasks. (Photo courtesy of Epson Robots.)

Seiko RT3300 Robot

RIKSHOSPITALET

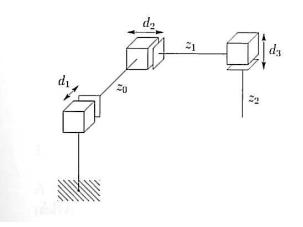
Fag 3480 - Introduction to Robotics

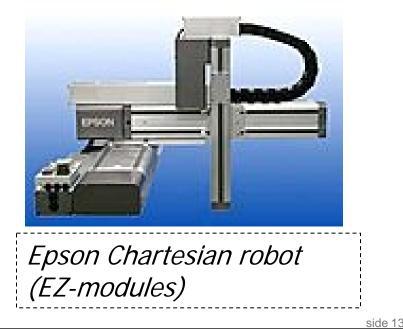
HELSE .

Common configurations: Cartesian robot (PPP)

Increased structural rigidity, higher precision

Pick and place operations





RIKSHOSPITALET

HELSE •••

Fag 3480 - Introduction to Robotics

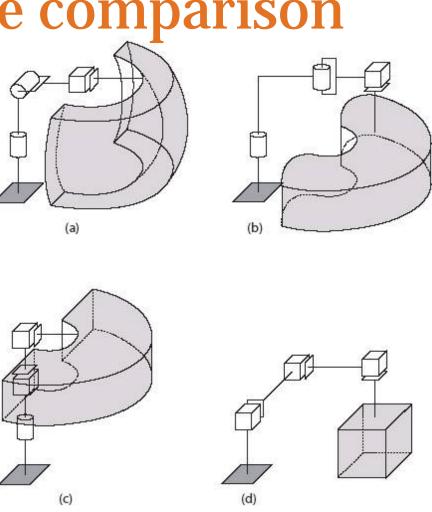
Workspace comparison

(a) spherical

(b) SCARA

(c) cylindrical

(d) Cartesian



side 14

RIKSHOSPITALET HELSE • SØR-ØST

Parallel manipulators

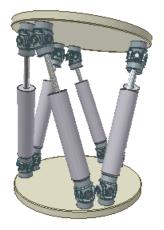
some of the links will form a closed chain with ground

Advantages:

Motors can be proximal: less powerful, higher bandwidth, easier to control

Disadvantages:

Generally less motion, kinematics can be challenging



6DOF Stewart platform

ABB IRB940 Tricept

side 15

HELSE •••

Image-guidedROBODOC –robotsIntegrated Surgical Systems Inc.



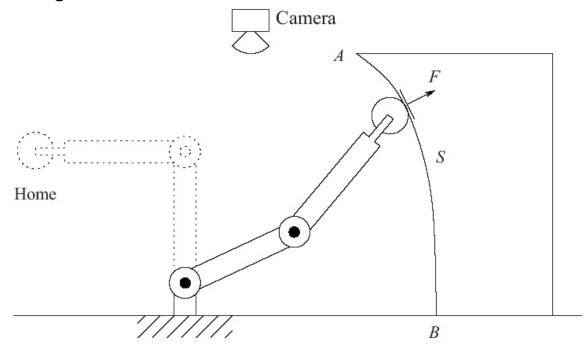
PathFinder – Armstrong HealthCare Lmt.

CASPAR - Maquet

Fag 3480 - Introduction to Robotics

Simple example: control of a 2DOF planar manipulator

Move from 'home' position and follow the path AB with a constant contact force F all using visual feedback



Coordinate frames & forward kinematics

0

2

Three coordinate frames:

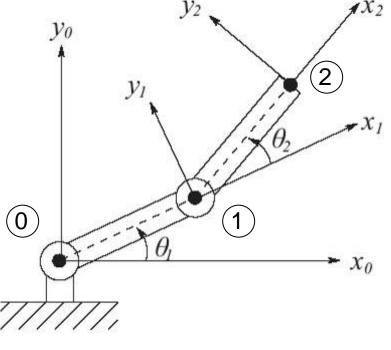
Positions:

$$\begin{bmatrix} x_1 \\ y_1 \end{bmatrix} = \begin{bmatrix} a_1 \cos(\theta_1) \\ a_1 \sin(\theta_1) \end{bmatrix}$$
$$\begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \begin{bmatrix} a_1 \cos(\theta_1) + a_2 \cos(\theta_1 + \theta_2) \\ a_1 \sin(\theta_1) + a_2 \sin(\theta_1 + \theta_2) \end{bmatrix} \equiv \begin{bmatrix} x \\ y \end{bmatrix}_t$$
$$\hat{x}_0 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \hat{y}_0 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Orientation of the tool frame:

$$\hat{\mathbf{x}}_{2} = \begin{bmatrix} \cos(\theta_{1} + \theta_{2}) \\ \sin(\theta_{1} + \theta_{2}) \end{bmatrix}, \quad \hat{\mathbf{y}}_{2} = \begin{bmatrix} -\sin(\theta_{1} + \theta_{2}) \\ \cos(\theta_{1} + \theta_{2}) \end{bmatrix}$$

$$\mathcal{R}_{2}^{0} = \begin{bmatrix} \hat{\mathbf{x}}_{2} \cdot \hat{\mathbf{x}}_{0} & \hat{\mathbf{y}}_{2} \cdot \hat{\mathbf{x}}_{0} \\ \hat{\mathbf{x}}_{2} \cdot \hat{\mathbf{y}}_{0} & \hat{\mathbf{y}}_{2} \cdot \hat{\mathbf{y}}_{0} \end{bmatrix} = \begin{bmatrix} \cos(\theta_{1} + \theta_{2}) & -\sin(\theta_{1} + \theta_{2}) \\ \sin(\theta_{1} + \theta_{2}) & \cos(\theta_{1} + \theta_{2}) \end{bmatrix}$$



RIKSHOSPITALET

side 18

SØR-ØST

HELSE •

Fag 3480 - Introduction to Robotics

Ch. 2: Rigid Body Motions and Homogeneous Transforms

Representing position

Definition: coordinate frame

A set *n* of orthonormal basis vectors spanning \mathbf{R}^n For example, $\hat{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \hat{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \hat{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$

When representing a point p, we need to specify a coordinate frame

 $p^{0} =$

6

 $p^1 = \begin{bmatrix} -2.8\\4.2 \end{bmatrix}$

With respect to o_0 :

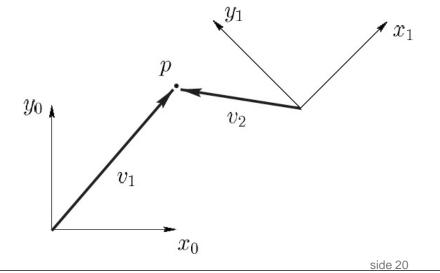
With respect to o_1 :

 v_1 and v_2 are invariant geometric entities

But the representation is dependant

upon choice of coordinate frame

$$v_1^0 = \begin{bmatrix} 5 \\ 6 \end{bmatrix}, v_1^1 = \begin{bmatrix} 7.77 \\ 0.8 \end{bmatrix}, v_2^0 = \begin{bmatrix} -5.1 \\ 1 \end{bmatrix}, v_2^1 = \begin{bmatrix} -2.8 \\ 4.2 \end{bmatrix}$$



Rotations

2D rotations

Representing one coordinate frame in terms of another

$$\boldsymbol{R}_1^0 = \begin{bmatrix} \boldsymbol{x}_1^0 & \boldsymbol{y}_1^0 \end{bmatrix}$$

Where the unit vectors are defined as:

$$x_{1}^{0} = \|\hat{x}_{0}\| \begin{bmatrix} \cos\theta \\ \sin\theta \end{bmatrix}, y_{1}^{0} = \|\hat{y}_{0}\| \begin{bmatrix} -\sin\theta \\ \cos\theta \end{bmatrix}$$

$$R_{1}^{0} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$
This is a rotation matrix
$$y_{1}$$

 y_0

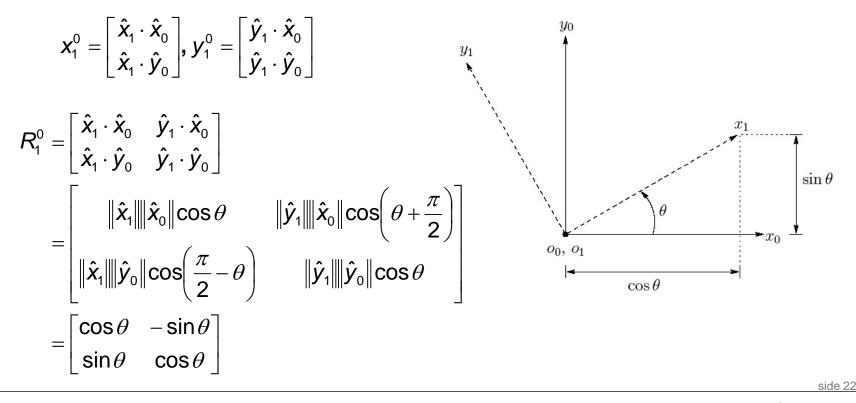
SØR-ØST

7

Alternate approach

Rotation matrices as projections

Projecting the axes of from o_1 onto the axes of frame o_0



Properties of rotation matrices

Inverse rotations:

$$R_0^{1} = \begin{bmatrix} \hat{x}_0 \cdot \hat{x}_1 & \hat{y}_0 \cdot \hat{x}_1 \\ \hat{x}_0 \cdot \hat{y}_1 & \hat{y}_0 \cdot \hat{y}_1 \end{bmatrix}$$
$$= \begin{bmatrix} \|\hat{x}_0\| \|\hat{x}_1\| \cos\theta & \|\hat{y}_0\| \|\hat{x}_1\| \cos\left(\frac{\pi}{2} - \theta\right) \\ \|\hat{x}_0\| \|\hat{y}_1\| \cos\left(\theta + \frac{\pi}{2}\right) & \|\hat{y}_0\| \|\hat{y}_1\| \cos\theta \end{bmatrix}$$
$$= \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = (R_1^0)^T$$

Or, another interpretation uses odd/even properties:

$$R_{0}^{1} = \begin{bmatrix} \cos(-\theta) & -\sin(-\theta) \\ \sin(-\theta) & \cos(-\theta) \end{bmatrix}$$
$$= \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = (R_{1}^{0})^{T}$$

Fag 3480 - Introduction to Robotics

Properties of rotation matrices

Inverse of a rotation matrix:

$$\begin{aligned} \left(\mathcal{R}_{1}^{0}\right)^{-1} &= \begin{bmatrix} \hat{x}_{1} \cdot \hat{x}_{0} & \hat{y}_{1} \cdot \hat{x}_{0} \\ \hat{x}_{1} \cdot \hat{y}_{0} & \hat{y}_{1} \cdot \hat{y}_{0} \end{bmatrix}^{-1} \\ &= \begin{bmatrix} \|\hat{x}_{1}\| \|\hat{x}_{0}\| \cos\theta & \|\hat{y}_{1}\| \|\hat{x}_{0}\| \cos\left(\theta - \frac{\pi}{2}\right) \\ \|\hat{x}_{1}\| \|\hat{y}_{0}\| \cos\left(\frac{\pi}{2} - \theta\right) & \|\hat{y}_{1}\| \|\hat{y}_{0}\| \cos\theta \end{bmatrix}^{-1} \\ &= \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}^{-1} = \frac{1}{\det(\mathcal{R}_{1}^{0})} \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix} = \left(\mathcal{R}_{1}^{0}\right)^{T} \end{aligned}$$

The determinant of a rotation matrix is always ±1

+1 if we only use right-handed convention

Fag 3480 - Introduction to Robotics

Properties of rotation matrices

Summary:

Columns (rows) of R are mutually orthogonal

Each column (row) of R is a unit vector

 $R^{T} = R^{-1}$ $\det(R) = 1$

The set of all *n* x *n* matrices that have these properties are called the **Special Orthogonal** group of order *n*

 $R \in SO(n)$

HELSE •••

3D rotations

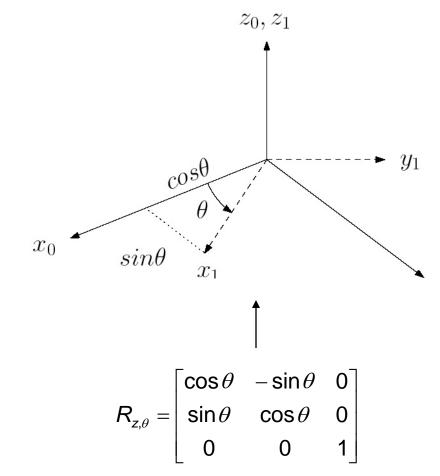
General 3D rotation:

$$R_{1}^{0} = \begin{bmatrix} \hat{x}_{1} \cdot \hat{x}_{0} & \hat{y}_{1} \cdot \hat{x}_{0} & \hat{z}_{1} \cdot \hat{x}_{0} \\ \hat{x}_{1} \cdot \hat{y}_{0} & \hat{y}_{1} \cdot \hat{y}_{0} & \hat{z}_{1} \cdot \hat{y}_{0} \\ \hat{x}_{1} \cdot \hat{z}_{0} & \hat{y}_{1} \cdot \hat{z}_{0} & \hat{z}_{1} \cdot \hat{z}_{0} \end{bmatrix} \in SO(3)$$

Special cases

Basic rotation matrices

$$R_{x,\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$
$$R_{y,\theta} = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$



side 26

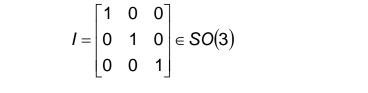
RIKSHOSPITALET HELSE ••• SØR•ØST

Properties of rotation matrices (cont'd)

SO(3) is a group under multiplication

Closure: if R_1 , $R_2 \in SO(3) \Rightarrow R_1R_2 \in SO(3)$

Identity:



 $(R_1R_2)R_3 = R_1(R_2R_3)$

Inverse:

Associativity:

Allows us to combine rotations: $R_{ac} = R_{ab}R_{bc}$

In general, members of SO(3) do not commute $R_1R_2 \neq R_2R_1$

 $R^{T} = R^{-1}$

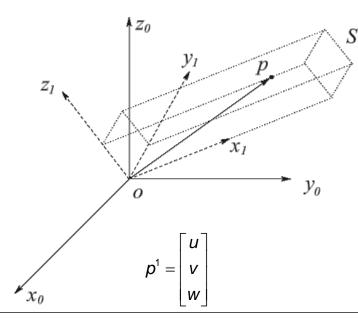
Fag 3480 - Introduction to Robotics

Rotational transformations

Now assume p is a fixed point on the rigid object with fixed coordinate frame o_1

The point *p* can be represented in the

frame $o_0 (p^0)$ again by the projection onto the base frame



$$p^{0} = \begin{bmatrix} p^{1} \cdot \hat{x}_{0} \\ p^{1} \cdot \hat{y}_{0} \\ p^{1} \cdot \hat{z}_{0} \end{bmatrix}$$
$$= \begin{bmatrix} (u\hat{x}_{1} + v\hat{y}_{1} + w\hat{z}_{1}) \cdot \hat{x}_{0} \\ (u\hat{x}_{1} + v\hat{y}_{1} + w\hat{z}_{1}) \cdot \hat{y}_{0} \\ (u\hat{x}_{1} + v\hat{y}_{1} + w\hat{z}_{1}) \cdot \hat{z}_{0} \end{bmatrix}$$
$$= \begin{bmatrix} u\hat{x}_{1} \cdot \hat{x}_{0} + v\hat{y}_{1} \cdot \hat{x}_{0} + w\hat{z}_{1} \cdot \hat{x}_{0} \\ u\hat{x}_{1} \cdot \hat{y}_{0} + v\hat{y}_{1} \cdot \hat{y}_{0} + w\hat{z}_{1} \cdot \hat{y}_{0} \\ u\hat{x}_{1} \cdot \hat{z}_{0} + v\hat{y}_{1} \cdot \hat{z}_{0} + w\hat{z}_{1} \cdot \hat{z}_{0} \end{bmatrix}$$
$$= \begin{bmatrix} \hat{x}_{1} \cdot \hat{x}_{0} & \hat{y}_{1} \cdot \hat{x}_{0} & \hat{z}_{1} \cdot \hat{x}_{0} \\ \hat{x}_{1} \cdot \hat{y}_{0} & \hat{y}_{1} \cdot \hat{y}_{0} & \hat{z}_{1} \cdot \hat{y}_{0} \\ \hat{x}_{1} \cdot \hat{z}_{0} & \hat{y}_{1} \cdot \hat{z}_{0} & \hat{z}_{1} \cdot \hat{z}_{0} \end{bmatrix} \begin{bmatrix} u \\ v \\ w \end{bmatrix} = R_{1}^{0} p^{1}$$

RIKSHOSPITALET

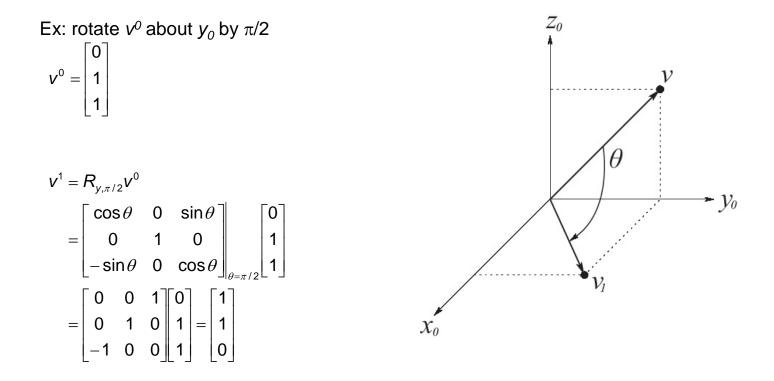
Fag 3480 - Introduction to Robotics

HELSE

Rotating a vector

Another interpretation of a rotation matrix:

Rotating a vector about an axis in a fixed frame



SØR-ØST

HELSE •

RIKSHOSPITALET

Rotation matrix summary

Three interpretations for the role of rotation matrix:

Representing the coordinates of a point in two different frames

Orientation of a transformed coordinate frame with respect to a fixed frame

Rotating vectors in the same coordinate frame

Similarity transforms

All coordinate frames are defined by a set of basis vectors

These span \mathbb{R}^n

Ex: the unit vectors *i*, *j*, *k*

In linear algebra, a $n \ge n$ matrix A is a mapping from \mathbb{R}^n to \mathbb{R}^n

y = Ax, where y is the image of x under the transformation A

Think of x as a linear combination of unit vectors (basis vectors), for example the unit vectors:

$$e_1 = \begin{bmatrix} 1 & 0 & \dots & 0 \end{bmatrix}^T$$
, ..., $e_n = \begin{bmatrix} 0 & 0 & \dots & 1 \end{bmatrix}^T$

Then the columns of A are the images of these basis vectors

If we want to represent vectors with respect to a different basis, e.g.: $f_1, ..., f_n$, the transformation A can be represented by:

$$A' = T^{-1}AT$$

Where the columns of *T* are the vectors $f_1, ..., f_m$

Similarity transforms

A' and A have the same eigenvalues

An eigenvector x of A corresponds to an eigenvector $T^{1}x$ of A'

Rotation matrices are also a change of basis

If A is a linear transformation in o_0 and B is a linear transformation in o_1 , then they are related as follows:

 $B = (R_1^0)^{-1} A R_1^0$ Ex: the frames o_0 and o_1 are related as follows:

$$\mathsf{R}_1^0 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$$

If the matrix A is also a rotation matrix $R_{z,\theta}$ (relative to o_0) the rotation expressed in o_1 is:

$$B = (R_1^0)^{-1} A R_1^0 = \begin{bmatrix} 0 & 0 & -1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & \sin\theta \\ 0 & -\sin\theta & \cos\theta \end{bmatrix}_{\text{side 32}}$$

RIKSHOSPITALET HELSE

Fag 3480 - Introduction to Robotics

w/ respect to the current frame

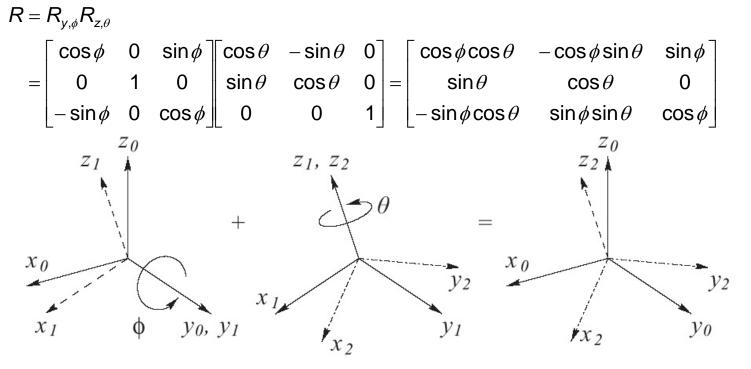
Ex:

three frames
$$o_0, o_1, o_2$$

 $p^0 = R_1^0 p^1$
 $p^1 = R_2^1 p^2$
 $p^0 = R_2^0 p^2$
 $p^0 = R_1^0 R_2^1 p^2$ \longrightarrow $R_2^0 = R_1^0 R_2^1$

This defines the composition law for successive rotations about the **current** reference frame: post-multiplication

Ex: *R* represents rotation about the current *y*-axis by ϕ followed by θ about the current *z*-axis



w/ respect to a fixed reference frame (o_0)

Let the rotation between two frames o_0 and o_1 be defined by R_1^0

Let *R* be a desired rotation w/ respect to the fixed frame o_0

Using the definition of a similarity transform, we have:

$$R_{2}^{0} = R_{1}^{0} \left[\left(R_{1}^{0} \right)^{-1} R R_{1}^{0} \right] = R R_{1}^{0}$$

This defines the composition law for successive rotations about a **fixed** reference frame: premultiplication

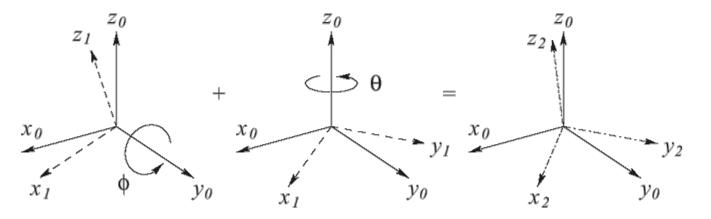
Ex: we want a rotation matrix *R* that is a composition of ϕ about $y_0(R_{y,\phi})$ and then θ about $z_0(R_{z,\theta})$

the second rotation needs to be projected back to the initial fixed frame

$$R_2^0 = (R_{y,\theta})^{-1} R_{z,\theta} R_{y,\theta}$$
$$= R_{y,-\theta} R_{z,\theta} R_{y,\theta}$$

Now the combination of the two rotations is:

$$R = R_{y,\phi} \Big[R_{y,-\phi} R_{z,\theta} R_{y,\phi} \Big] = R_{z,\theta} R_{y,\phi}$$



Fag 3480 - Introduction to Robotics

HELSE

RIKSHOSPITALET

Summary:

Consecutive rotations w/ respect to the current reference frame:

Post-multiplying by successive rotation matrices

w/ respect to a fixed reference frame (o_0)

Pre-multiplying by successive rotation matrices

We can also have hybrid compositions of rotations with respect to the current and a fixed frame using these same rules

There are three parameters that need to be specified to create arbitrary rigid body rotations

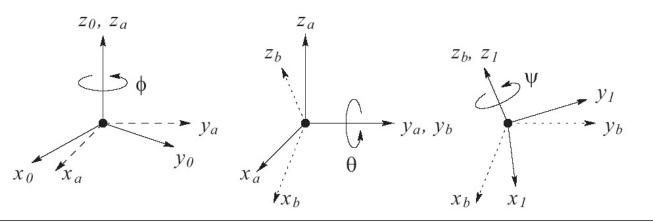
We will describe three such parameterizations:

Euler angles

Roll, Pitch, Yaw angles

Axis/Angle

Rotation by ϕ about the z-axis, followed by θ about the current y-axis, then ψ about the current z-axis $R_{ZYZ} = R_{z,\phi}R_{y,\theta}R_{z,\psi} = \begin{bmatrix} c_{\phi} & -s_{\phi} & 0\\ s_{\phi} & c_{\phi} & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c_{\theta} & 0 & s_{\theta}\\ 0 & 1 & 0\\ -s_{\theta} & 0 & c_{\theta} \end{bmatrix} \begin{bmatrix} c_{\psi} & -s_{\psi} & 0\\ s_{\psi} & c_{\psi} & 0\\ 0 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} c_{\phi}c_{\theta}c_{\psi} - s_{\phi}s_{\psi} & -c_{\phi}c_{\theta}s_{\psi} - s_{\phi}c_{\psi} & c_{\phi}s_{\theta}\\ s_{\phi}c_{\theta}c_{\psi} + c_{\phi}s_{\psi} & -s_{\phi}c_{\theta}s_{\psi} + c_{\phi}c_{\psi} & s_{\phi}s_{\theta}\\ -s_{\theta}c_{\psi} & s_{\theta}s_{\psi} & c_{\theta} \end{bmatrix}$



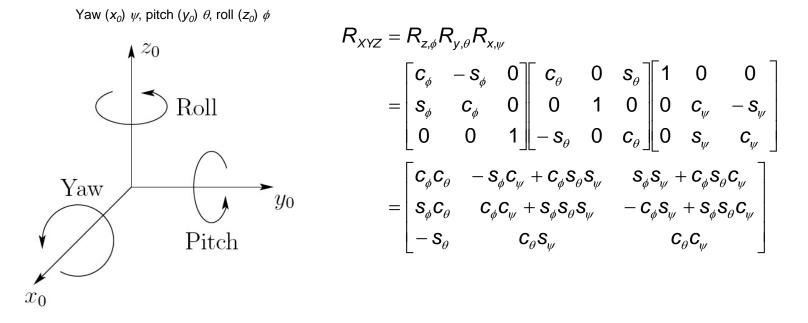
side 39

RIKSHOSPITALET HELSE • SØR-ØST

Fag 3480 - Introduction to Robotics

Roll, Pitch, Yaw angles

Three consecutive rotations about the fixed principal axes:



side 40

RIKSHOSPITALET HELSE SØR-ØST

Axis/Angle representation

Any rotation matrix in SO(3) can be represented as a single rotation about a suitable axis through a set angle

For example, assume that we have a unit vector:

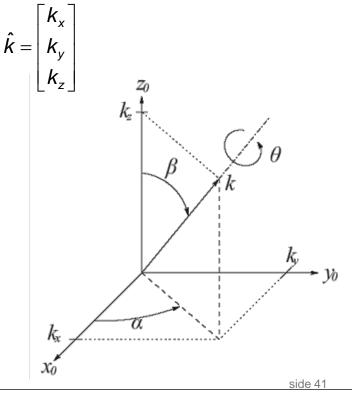
Given θ , we want to derive $R_{k,\theta}$:

Intermediate step: project the z-axis onto k:

$$R_{k,\theta} = RR_{z,\theta}R^{-1}$$

Where the rotation *R* is given by:

$$R = R_{z,\alpha}R_{y,\beta}$$
$$\Rightarrow R_{k,\theta} = R_{z,\alpha}R_{y,\beta}R_{z,\theta}R_{y,-\beta}R_{z,-\alpha}$$



RIKSHOSPITALET

HELSE

Axis/Angle representation

This is given by:

$$R_{k,\theta} = \begin{bmatrix} k_x^2 \mathbf{v}_{\theta} + \mathbf{c}_{\theta} & k_x k_y \mathbf{v}_{\theta} - k_z \mathbf{s}_{\theta} & k_x k_z \mathbf{v}_{\theta} + k_y \mathbf{s}_{\theta} \\ k_x k_y \mathbf{v}_{\theta} + k_z \mathbf{s}_{\theta} & k_y^2 \mathbf{v}_{\theta} + \mathbf{c}_{\theta} & k_y k_z \mathbf{v}_{\theta} - k_x \mathbf{s}_{\theta} \\ k_x k_z \mathbf{v}_{\theta} - k_y \mathbf{s}_{\theta} & k_y k_z \mathbf{v}_{\theta} + k_x \mathbf{s}_{\theta} & k_z^2 \mathbf{v}_{\theta} + \mathbf{c}_{\theta} \end{bmatrix}$$

Inverse problem:
Given arbitrary *R*, find *k* and
$$\theta$$

$$\theta = \cos^{-1}\left(\frac{Tr(R) - 1}{2}\right)$$

$$\hat{k} = \frac{1}{2\sin\theta} \begin{bmatrix} r_{32} - r_{23} \\ r_{13} - r_{31} \\ r_{21} - r_{12} \end{bmatrix}$$

Fag 3480 - Introduction to Robotics

Alternative approach

Rotation matrices in SO(3) can be derived using an alternate method using the matrix exponential

Assume that you have a unit vector, ω , that represents an axis of rotation

Take a vector q(t) and rotate it about ω with unity velocity

This gives:

$$\dot{\vec{q}}(t) = \omega \times \vec{q}(t)$$

= $\hat{\omega} \vec{q}(t)$

Where the 'cross-product' matrix is given as follows:

Now integrate to find the vector q(t):

$$\hat{\omega} = \begin{bmatrix} 0 & -\omega_3 & \omega_2 \\ \omega_3 & 0 & -\omega_1 \\ -\omega_2 & \omega_1 & 0 \end{bmatrix}$$

Rotating for θ units of time gives:

 $\vec{q}(t) = e^{\hat{\omega}t}\vec{q}(0)$ $\vec{q}(t) = e^{\hat{\omega}\theta}\vec{q}(0) = R_{\omega,\theta}\vec{q}(0)$

Thus the rotation about ω can be represented by the matrix exponential For notation, we can call:

$$\hat{\omega} \in so(3)$$

Rigid motions

Rigid motion is a combination of rotation and translation

Defined by a rotation matrix (R) and a displacement vector (d)

$$R \in SO(3)$$

 $d \in \mathbf{R}^3$

the group of all rigid motions (d, R) is known as the **Special Euclidean group**, SE(3)

$$SE(3) = \mathbf{R}^3 \times SO(3)$$

Consider three frames, o_0 , o_1 , and o_2 and corresponding rotation matrices R_2^1 , and R_1^0

Let d_2^1 be the vector from the origin o_1 to o_2 , d_1^0 from o_0 to o_1

For a point p^2 attached to o_2 , we can represent this vector in frames o_0 and o_1 :

$$p^{1} = R_{2}^{1}p^{2} + d_{2}^{1}$$

$$p^{0} = R_{1}^{0}p^{1} + d_{1}^{0}$$

$$= R_{1}^{0}(R_{2}^{1}p^{2} + d_{2}^{1}) + d_{1}^{0}$$

$$= R_{1}^{0}R_{2}^{1}p^{2} + R_{1}^{0}d_{2}^{1} + d_{1}^{0}$$

Fag 3480 - Introduction to Robotics

Homogeneous transforms

We can represent rigid motions (rotations and translations) as matrix multiplication

Define:

$$H_1^0 = \begin{bmatrix} R_1^0 & d_1^0 \\ 0 & 1 \end{bmatrix}$$
$$H_2^1 = \begin{bmatrix} R_2^1 & d_2^1 \\ 0 & 1 \end{bmatrix}$$

Now the point p_2 can be represented in frame o_0 :

 $P^0 = H_1^0 H_2^1 P^2$

Where the P^0 and P^2 are:

$$P^{0} = \begin{bmatrix} p^{0} \\ 1 \end{bmatrix}, P^{2} = \begin{bmatrix} p^{2} \\ 1 \end{bmatrix}$$

Homogeneous transforms

The matrix multiplication *H* is known as a **homogeneous transform** and we note that

$$H \in SE(3)$$

Inverse transforms:

$$H^{-1} = \begin{bmatrix} R^T & -R^T d \\ 0 & 1 \end{bmatrix}$$

HELSE

Homogeneous transforms

Basic transforms:

Three pure translation, three pure rotation

 $\mathbf{Trans}_{x,a} = \begin{bmatrix} 1 & 0 & 0 & a \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{Rot}_{x,\alpha} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & c_{\alpha} & -s_{\alpha} & 0 \\ 0 & s_{\alpha} & c_{\alpha} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\mathbf{Trans}_{y,b} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & b \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{Rot}_{y,\beta} = \begin{bmatrix} c_{\beta} & 0 & s_{\beta} & 0 \\ 0 & 1 & 0 & 0 \\ -s_{\beta} & 0 & c_{\beta} & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $\mathbf{Trans}_{z,c} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{Rot}_{z,\gamma} = \begin{bmatrix} c_{\gamma} & -s_{\gamma} & 0 & 0 \\ s_{\gamma} & c_{\gamma} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$

side 47

RIKSHOSPITALET HELSE • SØR-ØST

Fag 3480 - Introduction to Robotics