
The Interventional Centre

Ch. 3: Inverse Kinematics
Ch. 4: Velocity Kinematics
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Recap: kinematic decoupling
• Appropriate for systems that have an arm a wrist

– Such that the wrist joint axes are aligned at a point

• For such systems, we can split the inverse kinematics problem into two 
parts:

1. Inverse position kinematics: position of the wrist center
2. Inverse orientation kinematics: orientation of the wrist

• First, assume 6DOF, the last three intersecting at oc

• Use the position of the wrist center to determine the first three joint 
angles…
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The Interventional Centre

Recap: kinematic decoupling
• Now, origin of tool frame, o6, is a distance d6 translated along z5 (since z5 and 

z6 are collinear)
– Thus, the third column of R is the direction of z6 (w/ respect to the base frame) 

and we can write:

– Rearranging:

– Calling o = [ox oy oz]T, oc
0 = [xc yc zc]T
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The Interventional Centre

Recap: kinematic decoupling
• Since [xc yc zc]T are determined from the first three joint angles, our forward 

kinematics expression now allows us to solve for the first three joint angles 
decoupled from the final three.

– Thus we now have R3
0

– Note that:

– To solve for the final three joint angles:

– Since the last three joints for a
spherical wrist, we can use a set of
Euler angles to solve for them
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The Interventional Centre

Recap: Inverse position kinematics

• Now that we have [xc yc zc]T we need to find q1, q2, q3
– Solve for qi by projecting onto the xi-1, yi-1 plane, solve trig 

problem
– Two examples

• elbow (RRR) manipulator: 4 solutions (left-arm elbow-up, left-arm 
elbow-down, right-arm elbow-up, right-arm elbow-down)

• spherical (RRP) manipulator: 2 solutions (left-arm, right-arm)
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Inverse orientation kinematics

• Now that we can solve for the position of the wrist center 
(given kinematic decoupling), we can use the desired 
orientation of the end effector to solve for the last three 
joint angles
– Finding a set of Euler angles corresponding to a desired rotation 

matrix R
– We want the final three joint angles that give the orientation of the 

tool frame with respect to o3 (i.e. R6
3)
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Inverse orientation: spherical wrist
• Previously, we said that the forward kinematics of the spherical 

wrist were identical to a ZYZ Euler angle transformation:
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The Interventional Centre

• The inverse orientation problem reduces to finding a set of Euler angles (θ4, 
θ5, θ6) that satisfy: 

• to solve this, take two cases:
1. Both r13 and r23 are not zero (i.e. θ5 ≠ 0)… nonsingular
2. θ5 = 0, thus r13 = r23 = 0… singular

• Nonsingular case
– If θ5 ≠ 0, then r33 ≠ ±1 and:
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• Thus there are two values for θ5.  Using the first (s5 > 0):

• Using the second value for θ5 (s5 < 0):

• Thus for the nonsingular case, there are two solutions for the inverse 
orientation kinematics

Inverse orientation: spherical wrist
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The Interventional Centre

• In the singular case, θ5 = 0 thus s5 = 0 and r13 = r23 = r31 = r32 = 0
• Therefore, R6

3 has the form:

• So we can find the sum θ4 + θ6 as follows:

• Since we can only find the sum, there is an infinite number of solutions 
(singular configuration)

Inverse orientation: spherical wrist
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Inverse Kinematics: general 
procedure

1. Find q1, q2, q3 such that the position of the wrist center is:

2. Using q1, q2, q3, determine R3
0

3. Find Euler angles corresponding to the rotation matrix:
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Example: RRR arm with spherical 
wrist

• For the DH parameters below, we can derive R3
0 from the forward 

kinematics:

• We know that R6
3 is given as follows:

• To solve the inverse orientation kinematics:

– For a given desired R

link ai αi di θi

1 0 90 d1 θ1

2 a2 0 0 θ2

3 a3 0 0 θ3
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The Interventional Centre

Example: RRR arm with spherical 
wrist

• Euler angle solutions can be applied.  Taking the third column of (R3
0)TR

• Again, if θ5 ≠ 0, we can solve for θ5:

• Finally, we can solve for the two remaining angles as follows:

• For the singular configuration (θ5 = 0), we can only find θ4 + θ6 thus it is 
common to arbitrarily set θ4 and solve for θ6
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Example: elbow manipulator with 
spherical wrist

• Derive complete inverse kinematics solution

• we are given H = T6
0 such that:

lin
k

ai αi di θi

1 0 90 d1 θ1

2 a2 0 0 θ2

3 a3 0 0 θ3

4 0 -90 0 θ4

5 0 0 0 θ5

6 0 0 d6 θ3
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The Interventional Centre

Example: elbow manipulator with 
spherical wrist

• First, we find the wrist center:

• Inverse position kinematics:

• Where d is the shoulder offset (if any) and D is given by:
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The Interventional Centre

Example: elbow manipulator with 
spherical wrist

• Inverse orientation kinematics:
– Now that we know θ1, θ2, θ3, we know R3

0.  need to find R3
6:

• Solve for θ4, θ5, θ6, Euler angles:
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Example: inverse kinematics of 
SCARA manipulator

• We are given T4
0:
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Example: inverse kinematics of 
SCARA manipulator

• Thus, given the form of T4
0, R must have the following form: 

• Where α is defined as:
• To solve for θ1 and θ2 we project the manipulator onto the x0-y0 plane: 

• This gives two solutions for θ2:
• Once θ2 is known, we can solve for θ1:

• θ4 is now give as:
• Finally, it is trivial to see that d3 = oz + d4
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Example: number of solutions
• How many solutions to the inverse position kinematics of a planar 3-link 

arm?
– given a desired d=[dx dy]T, the forward kinematics can be written as:

– Therefore the inverse kinematics problem is under-constrained (two equations 
and three unknowns)
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∞ solutions is d is inside the workspace
1 solution if d is on the workspace boundary
0 solutions else 
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Example: number of solutions
• What if now we describe the desired position and orientation of the end 

effector?
– given a desired d=[dx dy]T, we can now call the position of o2 the ‘wrist center’.  

This position is given as:

– Now we have reduced the problem to finding the joint angles that will give the 
desired position of the wrist center (we have done this for a 2D planar 
manipulator).

– Finally, θ3 is given as: 
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Velocity Kinematics
• Now we know how to relate the end-effector position and orientation to the 

joint variables
• Now we want to relate end-effector linear and angular velocities with the joint 

velocities
• First we will discuss angular velocities about a fixed axis
• Second we discuss angular velocities about arbitrary (moving) axes
• We will then introduce the Jacobian

– Instantaneous transformation between a vector in Rn representing joint velocities to a 
vector in R6 representing the linear and angular velocities of the end-effector

• Finally, we use the Jacobian to discuss numerous aspects of manipulators:
– Singular configurations
– Dynamics
– Joint/end-effector forces and torques



The Interventional Centre

Angular velocity: fixed axis

• When a rigid body rotates about a fixed axis, every point 
moves in a circle
– Let k represent the fixed axis of rotation, then the angular velocity is:

– The velocity of any point on a rigid body due to this angular velocity 
is:

– Where r is the vector from the axis of rotation to the point

• When a rigid body translates, all points attached to the body 
have the same velocity

k̂θω =

rv ×= ω
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Next class…

• Derivation of the Jacobian
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