Ch. 3: Inverse Kinematics Ch. 4: Velocity Kinematics

Recap: kinematic decoupling

- Appropriate for systems that have an arm a wrist
- Such that the wrist joint axes are aligned at a point
- For such systems, we can split the inverse kinematics problem into two parts:

1. Inverse position kinematics: position of the wrist center
2. Inverse orientation kinematics: orientation of the wrist

- First, assume 6DOF, the last three intersecting at $\boldsymbol{o}_{\boldsymbol{c}}$

$$
\begin{aligned}
& R_{6}^{0}\left(q_{1}, \ldots, q_{6}\right)=R \\
& o_{6}^{0}\left(q_{1}, \ldots, q_{6}\right)=0
\end{aligned}
$$

- Use the position of the wrist center to determine the first three joint angles...

Recap: kinematic decoupling

- Now, origin of tool frame, o_{6}, is a distance d_{6} translated along z_{5} (since z_{5} and z_{6} are collinear)
- Thus, the third column of R is the direction of z_{6} ($w /$ respect to the base frame) and we can write:

$$
\begin{aligned}
& \text { vrite: } \\
& \qquad o=o_{6}^{0}=o_{c}^{o}+d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

- Rearranging:

$$
o_{c}^{o}=o-d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

- Calling $o=\left[o_{x} o_{y} o_{z}\right]^{\top}, o_{c}{ }^{0}=\left[x_{c} y_{c} z_{c}\right]^{\top}$

$$
\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]=\left[\begin{array}{l}
o_{x}-d_{6} r_{13} \\
o_{y}-d_{6} r_{23} \\
o_{z}-d_{6} r_{33}
\end{array}\right]
$$

Recap: kinematic decoupling

- Since $\left[x_{c} y_{c} z_{c}\right]^{T}$ are determined from the first three joint angles, our forward kinematics expression now allows us to solve for the first three joint angles decoupled from the final three.
- Thus we now have $R_{3}{ }^{0}$
- Note that:

$$
R=R_{3}^{0} R_{6}^{3}
$$

- To solve for the final three joint angles:

$$
R_{6}^{3}=\left(R_{3}^{0}\right)^{-1} R=\left(R_{3}^{0}\right)^{\top} R
$$

- Since the last three joints for a spherical wrist, we can use a set of Euler angles to solve for them

Recap: Inverse position kinematics

- Now that we have $\left[x_{c} y_{c} z_{c}\right]^{T}$ we need to find q_{1}, q_{2}, q_{3}
- Solve for q_{i} by projecting onto the x_{i-1}, y_{i-1} plane, solve trig problem
- Two examples
- elbow (RRR) manipulator: 4 solutions (left-arm elbow-up, left-arm elbow-down, right-arm elbow-up, right-arm elbow-down)
- spherical (RRP) manipulator: $\mathbf{2}$ solutions (left-arm, right-arm)

Inverse orientation kinematics

- Now that we can solve for the position of the wrist center (given kinematic decoupling), we can use the desired orientation of the end effector to solve for the last three joint angles
- Finding a set of Euler angles corresponding to a desired rotation matrix R
- We want the final three joint angles that give the orientation of the tool frame with respect to O_{3} (i.e. $R_{6}{ }^{3}$)

Inverse orientation: spherical wrist

- Previously, we said that the forward kinematics of the spherical wrist were identical to a $Z Y Z$ Euler angle transformation:

$$
T_{6}^{3}=A_{4} A_{5} A_{6}=\left[\begin{array}{cccc}
c_{4} c_{5} c_{6}-s_{4} s_{6} & -c_{4} c_{5} s_{6}-s_{4} c_{6} & c_{4} s_{5} & c_{4} s_{5} d_{6} \\
s_{4} c_{5} c_{6}+c_{4} s_{6} & -s_{4} c_{5} s_{6}+c_{4} c_{6} & s_{4} s_{5} & s_{4} s_{5} d_{6} \\
-s_{5} c_{6} & s_{5} c_{6} & c_{5} & c_{5} d_{6} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Inverse orientation: spherical wrist

- The inverse orientation problem reduces to finding a set of Euler angles (θ_{4}, θ_{5}, θ_{6}) that satisfy:

$$
R_{6}^{3}=\left[\begin{array}{ccc}
c_{4} c_{5} c_{6}-S_{4} S_{6} & -C_{4} c_{5} S_{6}-S_{4} c_{6} & c_{4} S_{5} \\
S_{4} c_{5} c_{6}+c_{4} S_{6} & -S_{4} c_{5} S_{6}+c_{4} c_{6} & S_{4} S_{5} \\
-S_{5} c_{6} & S_{5} c_{6} & c_{5}
\end{array}\right]
$$

- to solve this, take two cases:

1. Both r_{13} and r_{23} are not zero (i.e. $\theta_{5} \neq 0$)... nonsingular
2. $\theta_{5}=0$, thus $r_{13}=r_{23}=0$... singular

- Nonsingular case
- If $\theta_{5} \neq 0$, then $r_{33} \neq \pm 1$ and:

$$
\begin{aligned}
& c_{5}=r_{33}, s_{5}= \pm \sqrt{1-r_{33}^{2}} \\
& \theta_{5}=\boldsymbol{\operatorname { t a n }} 2\left(r_{33}, \pm \sqrt{1-r_{33}^{2}}\right)
\end{aligned}
$$

Inverse orientation: spherical wrist

- Thus there are two values for $\boldsymbol{\theta}_{5}$. Using the first $\left(s_{5}>0\right)$:

$$
\begin{aligned}
& \theta_{4}=\boldsymbol{\operatorname { t a n }} 2\left(r_{13}, r_{23}\right) \\
& \theta_{6}=\boldsymbol{\operatorname { a t a n }} 2\left(-r_{31}, r_{32}\right)
\end{aligned}
$$

- Using the second value for $\theta_{5}\left(s_{5}<0\right)$:

$$
\begin{aligned}
& \theta_{4}=\operatorname{atan} 2\left(-r_{13},-r_{23}\right) \\
& \theta_{6}=\operatorname{atan} 2\left(r_{31},-r_{32}\right)
\end{aligned}
$$

- Thus for the nonsingular case, there are two solutions for the inverse orientation kinematics

Inverse orientation: spherical wrist

- In the singular case, $\theta_{5}=0$ thus $s_{5}=0$ and $r_{13}=r_{23}=r_{31}=r_{32}=0$
- Therefore, $R_{6}{ }^{3}$ has the form:

$$
R_{6}^{3}=\left[\begin{array}{ccc}
c_{4} c_{6}-s_{4} s_{6} & -c_{4} s_{6}-s_{4} c_{6} & 0 \\
s_{4} c_{6}+c_{4} s_{6} & -s_{4} s_{6}+c_{4} c_{6} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
c_{46} & -s_{46} & 0 \\
s_{46} & c_{46} & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
r_{11} & r_{12} & 0 \\
r_{21} & r_{22} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- So we can find the sum $\theta_{4}+\theta_{6}$ as follows:

$$
\theta_{4}+\theta_{6}=\boldsymbol{\operatorname { a t a n }} 2\left(r_{11}, r_{21}\right)=\boldsymbol{\operatorname { a t a n }} 2\left(r_{11},-r_{12}\right)
$$

- Since we can only find the sum, there is an infinite number of solutions (singular configuration)

Inverse Kinematics: general
 procedure

1. Find q_{1}, q_{2}, q_{3} such that the position of the wrist center is:

$$
o_{c}^{o}=0-d_{6} R\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

2. Using q_{1}, q_{2}, q_{3}, determine $R_{3}{ }^{0}$
3. Find Euler angles corresponding to the rotation matrix:

$$
R_{6}^{3}=\left(R_{3}^{0}\right)^{-1} R=\left(R_{3}^{0}\right)^{\top} R \quad\left\{\begin{array}{l}
\text { inverse orientation } \\
\text { kinematics }
\end{array}\right.
$$

Example: RRR arm with spherical

wrist

- For the DH parameters below, we can derive $R_{3}{ }^{0}$ from the forward kinematics:

$$
R_{3}^{0}=\left[\begin{array}{ccc}
c_{1} c_{23} & -c_{1} s_{23} & s_{1} \\
s_{1} c_{23} & -s_{1} s_{23} & -c_{1} \\
s_{23} & c_{23} & 0
\end{array}\right]
$$

- We know that $\boldsymbol{R}_{6}{ }^{3}$ is given as follows:
$R_{6}^{3}=\left[\begin{array}{ccc}c_{4} c_{5} c_{6}-S_{4} s_{6} & -C_{4} c_{5} S_{6}-S_{4} c_{6} & c_{4} s_{5} \\ S_{4} C_{5} c_{6}+c_{4} S_{6} & -S_{4} c_{5} S_{6}+c_{4} c_{6} & S_{4} s_{5} \\ -S_{5} c_{6} & S_{5} c_{6} & c_{5}\end{array}\right]$

Example: RRR arm with spherical

wrist

- Euler angle solutions can be applied. Taking the third column of $\left(\boldsymbol{R}_{3}{ }^{0}\right)^{\top} \boldsymbol{R}$

$$
\begin{aligned}
C_{4} S_{5} & =c_{1} C_{23} r_{13}+s_{1} c_{23} r_{23}+s_{23} r_{33} \\
S_{4} S_{5} & =-C_{1} S_{23} r_{13}-S_{1} S_{23} r_{23}+c_{23} r_{33} \\
C_{5} & =S_{1} r_{13}-c_{1} r_{23}
\end{aligned}
$$

- Again, if $\boldsymbol{\theta}_{5} \neq 0$, we can solve for $\boldsymbol{\theta}_{5}$:

$$
\theta_{5}=\boldsymbol{\operatorname { t a n }} 2\left(s_{1} r_{13}-c_{1} r_{23}, \pm \sqrt{1-\left(s_{1} r_{13}-c_{1} r_{23}\right)^{2}}\right)
$$

- Finally, we can solve for the two remaining angles as follows:

$$
\begin{aligned}
& \theta_{4}=\boldsymbol{\operatorname { t a n }} 2\left(c_{1} c_{23} r_{13}+s_{1} c_{23} r_{23}+s_{23} r_{33},-c_{1} s_{23} r_{13}-s_{1} s_{23} r_{23}+c_{23} r_{33}\right) \\
& \theta_{6}=\boldsymbol{\operatorname { t a n }} 2\left(-s_{1} r_{11}+c_{1} r_{21}, s_{1} r_{12}-c_{1} r_{22}\right)
\end{aligned}
$$

- For the singular configuration $\left(\theta_{5}=0\right)$, we can only find $\theta_{4}+\theta_{6}$ thus it is common to arbitrarily set θ_{4} and solve for θ_{6}

Example: elbow manipulator with spherical wrist

- Derive complete inverse kinematics solution

$$
O=\left[\begin{array}{l}
o_{x} \\
o_{y} \\
o_{z}
\end{array}\right], R=\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

lin k	a_{i}	α_{i}	d_{i}	θ_{i}
1	0	90	d_{1}	θ_{1}
2	a_{2}	0	0	θ_{2}
3	a_{3}	0	0	θ_{3}
4	0	-90	0	θ_{4}
5	0	0	0	θ_{5}
6	0	0	d_{6}	θ_{3}

- we are given $H=T_{6}{ }^{0}$ such that:

Example: elbow manipulator with spherical wrist

- First, we find the wrist center:

$$
\left[\begin{array}{l}
x_{c} \\
y_{c} \\
z_{c}
\end{array}\right]=\left[\begin{array}{l}
o_{x}-d_{6} r_{13} \\
o_{y}-d_{6} r_{23} \\
o_{z}-d_{6} r_{33}
\end{array}\right]
$$

- Inverse position kinematics:

$$
\begin{aligned}
& \theta_{1}=\boldsymbol{\operatorname { t a n }} 2\left(x_{c}, y_{c}\right) \\
& \theta_{2}=\boldsymbol{\operatorname { a t a n }} 2\left(\sqrt{x_{c}{ }^{2}+y_{c}^{2}-d^{2}}, z_{c}-d_{1}\right)-\boldsymbol{\operatorname { t a n }} 2\left(a_{2}+a_{3} c_{3}, a_{3} s_{3}\right) \\
& \theta_{3}=\boldsymbol{\operatorname { a t a n }} 2\left(D, \pm \sqrt{1-D^{2}}\right)
\end{aligned}
$$

- Where d is the shoulder offset (if any) and D is given by:

$$
D=\frac{x_{c}^{2}+y_{c}{ }^{2}-d^{2}+\left(z_{c}-d_{1}\right)^{2}-a_{2}{ }^{2}-a_{3}{ }^{2}}{2 a_{2} a_{3}}
$$

Example: elbow manipulator with spherical wrist

- Inverse orientation kinematics:
- Now that we know $\theta_{1}, \theta_{2}, \theta_{3}$, we know $R_{3}{ }^{0}$. need to find $R_{3}{ }^{6}$:

$$
R_{6}^{3}=\left(R_{3}^{0}\right)^{T} R
$$

- Solve for $\theta_{4}, \theta_{5}, \theta_{6}$, Euler angles:

$$
\begin{aligned}
& \theta_{4}=\operatorname{atan} 2\left(c_{1} c_{23} r_{13}+s_{1} c_{23} r_{23}+s_{23} r_{33},-c_{1} s_{23} r_{13}-s_{1} s_{23} r_{23}+c_{23} r_{33}\right) \\
& \theta_{5}=\operatorname{atan} 2\left(s_{1} r_{13}-c_{1} r_{23}, \pm \sqrt{1-\left(s_{1} r_{13}-c_{1} r_{23}\right)^{2}}\right) \\
& \theta_{6}=\operatorname{atan} 2\left(-s_{1} r_{11}+c_{1} r_{21}, s_{1} r_{12}-c_{1} r_{22}\right)
\end{aligned}
$$

Example: inverse kinematics of SCARA manipulator

- We are given $T_{4}{ }^{0}: \quad T_{4}^{0}=\left[\begin{array}{ll}R & 0 \\ 0 & 1\end{array}\right]$

Example: inverse kinematics of SCARA manipulator

- Thus, given the form of $T_{4}{ }^{0}, R$ must have the following form:

$$
R=\left[\begin{array}{ccc}
C_{\alpha} & -S_{\alpha} & 0 \\
S_{\alpha} & C_{\alpha} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Where $\boldsymbol{\alpha}$ is defined as: $\quad \alpha=\theta_{1}+\theta_{2}-\theta_{4}=\operatorname{atan} 2\left(r_{11}, r_{12}\right)$
- To solve for θ_{1} and θ_{2} we project the manipulator onto the $x_{0}-y_{0}$ plane:

$$
c_{2}=\frac{o_{x}{ }^{2}+o_{y}{ }^{2}-a_{1}{ }^{2}-a_{2}{ }^{2}}{2 a_{1} a_{2}}
$$

- This gives two solutions for θ_{2} : $\quad \theta_{2}=\operatorname{atan} 2\left(c_{2}, \pm \sqrt{1-c_{2}^{2}}\right)$
- Once θ_{2} is known, we can solve for θ_{1} :

$$
\theta_{1}=\boldsymbol{\operatorname { t a n }} 2\left(o_{x}, o_{y}\right)-\boldsymbol{\operatorname { t a n }} 2\left(a_{1}+a_{2} c_{2}, a_{2} s_{2}\right)
$$

- $\boldsymbol{\theta}_{4}$ is now give as: $\theta_{4}=\theta_{1}+\theta_{2}-\operatorname{atan} 2\left(r_{11}, r_{12}\right)$
- Finally, it is trivial to see that $d_{3}=o_{z}+d_{4}$

Example: number of solutions

- How many solutions to the inverse position kinematics of a planar 3-link arm?
- given a desired $d=\left[d_{x} d_{y}\right]^{\top}$, the forward kinematics can be written as:

$$
\begin{aligned}
& d_{x}=a_{1} c_{1}+a_{2} c_{12}+a_{3} c_{123} \\
& d_{y}=a_{1} s_{1}+a_{2} s_{12}+a_{3} s_{123}
\end{aligned}
$$

- Therefore the inverse kinematics problem is under-constrained (two equations and three unknowns)

$\left\{\begin{array}{l}\infty \text { solutions is } d \text { is inside the workspace } \\ 1 \text { solution if } d \text { is on the workspace boundary } \\ 0 \text { solutions else }\end{array}\right.$

Example: number of solutions

- What if now we describe the desired position and orientation of the end effector?
- given a desired $d=\left[d_{x} d_{y}\right]^{\top}$, we can now call the position of o_{2} the 'wrist center'. This position is given as:

$$
\begin{aligned}
& w_{x}=d_{x}-a_{3} \cos \left(\theta_{d}\right) \\
& w_{y}=d_{y}-a_{3} \sin \left(\theta_{d}\right)
\end{aligned}
$$

- Now we have reduced the problem to finding the joint angles that will give the desired position of the wrist center (we have done this for a 2D planar manipulator).
- Finally, θ_{3} is given as: $\quad \theta_{3}=\theta_{d}-\left(\theta_{1}+\theta_{2}\right)$
 ∞ solutions if the wrist center is on the origin
2 solutions if wrist center is inside the 2-link workspace
1 solution if wrist center is on the 2 -link workspace boundary
0 solutions else

Velocity Kinematics

- Now we know how to relate the end-effector position and orientation to the joint variables
- Now we want to relate end-effector linear and angular velocities with the joint velocities
- First we will discuss angular velocities about a fixed axis
- Second we discuss angular velocities about arbitrary (moving) axes
- We will then introduce the Jacobian
- Instantaneous transformation between a vector in R^{n} representing joint velocities to a vector in R^{6} representing the linear and angular velocities of the end-effector
- Finally, we use the Jacobian to discuss numerous aspects of manipulators:
- Singular configurations
- Dynamics
- Joint/end-effector forces and torques

Angular velocity: fixed axis

- When a rigid body rotates about a fixed axis, every point moves in a circle
- Let \boldsymbol{k} represent the fixed axis of rotation, then the angular velocity is:

$$
\omega=\hat{\theta} \hat{K}
$$

- The velocity of any point on a rigid body due to this angular velocity is:

$$
v=\omega \times r
$$

- Where r is the vector from the axis of rotation to the point
- When a rigid body translates, all points attached to the body have the same velocity

Next class...

- Derivation of the Jacobian

