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Today: Evolutionary robotics

 Why evolutionary robotics

e Basics of evolutionary optimization
— INF3490 will discuss algorithms in detalil

 lllustrating examples
— ROBIN in-house robotic platforms

 Research challenges
— Reality gap
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Machine intelligence in robotics

e Sensing, vision

— Gather information about the world and represent
it internally for further processing

e Control and planning
— Low-level control
— Path planning (arms and mobile robots)
— Task planning
« Design
— Robot body shape / structure
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Example: Henriette

http://www.youtube.com/watch?v=mXpz5khMY2c




UiO ¢ University of Oslo

Why evolutionary robotics?

« Adaptation to changes in environment or robot
— Robot may break or deteriorate
— Environment may change unexpectedly

e Optimizing for efficiency
— Energy, speed weight, actuators

« Unconventional, complex designs

— New materials and actuators make it more
challenging with conventional design approaches

Adaptation, optimization, exploration
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Henriette: Parameterized control

Leg position Leg position Leg position
blts Pause length bits bits Pause length bits bits Pause length blts
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« Walking pattern coded into bit strings.

o 3 *“states” consisting of leg configuration and pause
length

« An evolutionary algorithm was used to evolve the leg
configurations and the pause length.

* For each leg configuration, 4 bits denote the position
of 4 actuators, 6 bits denote the length of the pause.

« Total bit string / genome length: 30 bits

Pneumatic
cylinder
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Evolutionary Algorithm (EA)

Initializ
tialize Evaluate

rancljotr_n individuals
population

Create new Termination
population from criterion
good individuals reached?

Verify and

apply
solution(s)




UiO ¢ University of Oslo

Evolutionary mechanisms

e Selection

— Good / fit individuals have a higher chance of
reproducing

* |Inheritance
— Properties from parents are transferred to offspring

e Variation

— Changes in the genome adjust the behavior of the
offspring, sometimes to the better
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Selection

« Each individual in a population is evaluated
and assigned a fithess value, ie. a measure
of how a solution performs a given task
— Example: The forward speed of a robot

— Henriette: measured by the angular difference
from the rotation encoder over 3 repetitions of the

sequence
* The probability of an individual being
selected for reproduction is proportional to its
fitness value (randomness Is present)
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Inheritance + variation

parent 1 parent 2
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Without bio-terminology, what is an EA?

* A population-based stochastic search algorithm

— Searching for satisfactory solutions in a solution space of all
possible solutions

— Searches in «parallel» on a population of solutions

— Black-box: does not assume knowledge about the problem
(but the results depend on the mapping and fithess function)

« Can handle large search spaces with complex
fitness landscape

— Less chance of being stuck in local optima

e Can give unexpected results -
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Simulation

« Evolution on a real robot is impractical
— Time consuming
— Requires supervision: can get stuck, fall over
— Mechanical wear

e Simulation should help

— Allows automated evaluation

— Can be much faster
« especially with parallel computation

13
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Example: Quadratot

14



UiO ¢ University of Oslo

Quadratot: Hardware and model (demo)

3D printed parts NVIDIA PhysX
AX12/18 servos Revolute motor joints
Silicone rubber socks Rigid bodies (boxes) *



UiO ¢ Universitv

!

Quadratot:
Parameterized control

(Mmapping)
For each joint: \

— Curve shape
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— Phase E
— Amplitude %
— Center angle t0 tl1 tI2 tI3 t4

time
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Genome length 314 bits
Qu ad ratOt: Population size 200
Gen etl C al g or | { h m (GA) Number of generations 300
Mutation rate 1/314
o Crossover rate 0.2
Initialize _ E\{a_luate
random individuals
opulation simulator
PoP ( ) 200 x 300 =

60 000 tests per
evolutionary run!

Create new Termination

Verify
population from criterion yes o

solution(s)

good individuals reached? on robot
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|
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Motion capture
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Quadratot:
Evolved gait

simulator
real 1 --
real 2 ---
real 3 o
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X position (cm)
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Parameterized gaits + optimization [25] 153 — 5.8 —
HyperNEAT in hardware [25] 180 — 9.7 -
RL PoWER Spline [18] 300 — 11.1 -
GA + simulator [9] 60000 *16.7 13.8 17.8
HyperNEAT + simulator [this paper] 40000| **25.4 14.5 -
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Reality gap

« A simulator cannot capture all aspects of
reality

e Evolved solutions may exploit features of the
simulator not present in reality

- The solutions evolved In simulation behave
differently when applied to the real robot!

21
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Quadratot:
Reality gap
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How to deal with the reality gap?

e |deas?
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How to deal with the reality gap

1. Increase simulation fidelity

— Manually: do more precise measurements, increase solver
accuracy

— Automatically: measure deviation simulation-reality, auto-
tune simulator for smaller deviation
2. Do not allow for solutions using badly simulated
behaviour
— Manually: E.g. Encourage slow, static movements
— Automatically: Avoid solution types that transfer poorly
3. Online learning after deployment on real robot
— Can use more evolution, reinforcement learning, or other
method

24
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1. Automatic simulator tuning

e Sample from real world

— Test selected solutions
on real robot

 Tune (evolve) simulator
to fit all samples

 Evolve new solutions
using tuned simulator
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Fitness

Fitness
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http://youtu.be/gDPbXvADyio

2. Transferability (UPMC, Paris)
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fitness function
in reality
{unknown)

realistic parts
of the simulation

_’_,-""/ \ + population
o \‘ in simulation
1

1
solution efficient a nd!
transferable:

no significant
performance
loss in reality

interpolation of the transferahility
function from the points known in reality

ﬁ

Transferability

looking far a solution efficient in simulation
and transferable from simulation to reality

-

Fitness

interpolated transferability function

N

] transferable zones

# points known

in reality non-transferable

Zones

X

which parts]of the

realistic parts . . L
P simulation are Jrealistic ?

+ of the simulation

[ \

\ + population
\ in simulation

wunrealistic parts |
iof the simulation;




UiO ¢ University of Oslo

3. Adaptation after transferral (video)

e Reality gap is
«accepted»
e Adaptation

algorithm is carried
out on the real robot

e Needs to take into -
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Self Model synthesis Exploratory Action synthesis

Self-modeling —e {

robot
4

(Cornell U.) \..-‘

~
\.\
| Q

* Creates self-model
through exploratory ..
actions il 0~

e Uses evolution to |
search for walking
pattern using self-
model F

 |fthe robotis
broken, a new self- o
model is "
constructed

Target Behavior synthesis \

rop

http://youtu.be/3HFAB7frZWM -l
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Evolving shape and control

e Physics simulation allows
evolution of shape and
control simultaneously

— More efficient designs for
complex problems?

) ,«
AsiM0 wt

- — New designs for new
- environments?

— Allows for offloading

computation to the body?

Sims: http://youtu.be/JBgG VSP7{8
GOLEM: http://youtu.be/sLtXXFw q8c 29
Soft robot: http://voutu.be/z9ptOeByLA4
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Example: «hox» body evolution

e Bio-inspired, generative T
approach i
@m0
— Allows a variety of bodies |
from a compact code i
* Designed for production @i =t .7 O Je)

with 3D printer and
commercial servos
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«hox»:. Some results (video)
= \/

|~
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Example: Karkinos (MSc. project)

« Hybrid automatic / engineered
design of robot shape and control

= Dominated solutions
e Pareto set

Weight

2.05

21

215
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Master’s projects in evolutionary
robotics at the ROBIN group

 Integration of locomotion

learning platform

(evolutionary algorithm + simulator +
hardware interface + motion capture)

 Evolution of locomotion

patterns for robots :

(walking, crawling, obstacles, robustnessf |
neural networks, comparing with other l@w
learning methods) ,

* Reality gap research
(testing various algorithms for a smooth

transfer from simulator to reality) E :
° I . '
Design and build new robot h‘*""b

(CAD, 3D print, electronics, simulator)

http://www.mn.uio.no/ifi/studier/masteroppgaver/robin/ 33
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Relevant courses

« INF3490 Biologically inspired computing
 INF4500 Rapid prototyping of robotic systems
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Summary

« Evolutionary robotics can be useful for
adaptation, optimization, design exploration

e Simulation is useful for evolutionary search

* The reality gap remains a research challenge
— Simulator tuning, transferability, online adaptation

e Co-evolution of body and control gives new
possibilities

e Please continue with MSc. studies at ROBIN

5



