Recap: kinematic decoupling

e Appropriate for systems that have an arm a wrist
— Such that the wrist joint axes are aligned at a point

e For such systems, we can split the inverse kinematics problem into two
parts:

1. Inverse position kinematics: position of the wrist center
2. Inverse orientation kinematics: orientation of the wrist

* First, assume 6DOF, the last three intersecting at o,
R2(q,,....q5)= R
0d(qy,-..,q5) =0

e Use the position of the wrist center to determine the first three joint
angles...
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Recap: kinematic decoupling

e Now, origin of tool frame, o,, is a distance d, translated along z. (since z; and
z, are collinear)

— Thus, the third column of R is the direction of z, (w/ respect to the base frame)

and we can write: 0
0=04 =02 +d,R|0 B
1
— Rearranging: 0
0, =0—-dsR| 0 ds
1
— Callingo=[0,0,0,J7,0°%=[x.y 2] -
Xe O, — d6r13
Yo |=]0, —dghy
Z; 0, — d6r33
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Recap: kinematic decoupling

e Since [x_y,z]" are determined from the first three joint angles, our forward
kinematics expression now allows us to solve for the first three joint angles
decoupled from the final three.

— Thus we now have R,?

— Note that:
R = RgRg’

— To solve for the final three joint angles:
R:=(R)'R=(RVR
— Since the last three joints for a

spherical wrist, we can use a set of
Euler angles to solve for them
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Recap: Inverse position kinematics

e Now that we have [x_y_z_]" we need to find q,, q,, q;

— Solve for qg; by projecting onto the x; ;, y. ; plane, solve trig
problem
— Two examples

e elbow (RRR) manipulator: 4 solutions (left-arm elbow-up, left-arm
elbow-down, right-arm elbow-up, right-arm elbow-down)

e spherical (RRP) manipulator: 2 solutions (left-arm, right-arm)
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Inverse orientation kinematics

e Now that we can solve for the position of the wrist center

(given kinematic decoupling), we can use the desired
orientation of the end effector to solve for the last three
joint angles
— Finding a set of Euler angles corresponding to a desired rotation
matrix R

— We want the final three joint angles that give the orientation of the
tool frame with respect to o, (i.e. R.?)
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Inverse Kinematics: general
procedure

1. Find q,, q,, q; such that the position of the wrist center is:

0 A
o, =0—-d;R| 0 . o
inverse position
1 kinematics
2. Using q,, q,, q;, determine R,° )

3. Find Euler angles corresponding to the rotation matrix:

R:=(RS)'R=(ROJ R

inverse orientation
kinematics
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Velocity Kinematics

Now we know how to relate the end-effector position and orientation to the
joint variables

Now we want to relate end-effector linear and angular velocities with the joint
velocities

First we will discuss angular velocities about a fixed axis

Second we discuss angular velocities about arbitrary (moving) axes

We will then introduce the Jacobian

— Instantaneous transformation between a vector in R" representing joint velocities to a
vector in R® representing the linear and angular velocities of the end-effector

e Finally, we use the Jacobian to discuss numerous aspects of manipulators:
— Singular configurations

— Dynamics

— Joint/end-effector forces and torques
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Angular velocity: fixed axis

e When arigid body rotates about a fixed axis, every point
moves in a circle
— Let k represent the fixed axis of rotation, then the angular velocity is:
w = 0k
— The velocity of any point on a rigid body due to this angular velocity

IS: V=wXxr

— Where ris the vector from the axis of rotation to the point

e When arigid body translates, all points attached to the body
have the same velocity
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The complete Jacobian

e The it" column of J, is given by:
J — Zi—1 X (On - O,'_1) for I reVOIUte
: Z_, for i prismatic

1

e The it" column of J  is given by:
J - z,, forirevolute
“ | 0 foriprismatic
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Example: two-link planar manipulator

e Calculate J for the following manipulator:
— Two joint angles, thus J is 6x2

J(q){zgx(oz_oo) z1°><(02—o1)}

z) z;
— Where:
0 a,c, a,c, +a,c,, 0
0,=|0}0,=|as, |,0,=|as, +a,s, z)=2=|0
0 0 0 1
—a;S; —8S;; — @Sy,
a0+ 8,61, a0,
0 0 -
J(q)= 0 0 ’
0 0
1 1
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Singularities

e We can now derive the Jacobian as a mapping given by the following:

£=J(q)

e This means that the columns of J form a basis for the space of possible end
effector velocities, meaning that all possible end-effector velocities are linear
combinations of the columns of the Jacobean matrix:

§:J1Q1 +J242 +J3‘?3 +J4é4
e Thus, for the end effector to be able to achieve any arbitrary body velocity &,
J must have rank 6, which is the number of linearly independent columns

e We know that J is 6xn and that:

for AcR™", rank(A)<min(m,n)

e Thus, rank(J) < min(6,n)

e For example, for the two link planar manipulator, rank(J)<2
e For example, for the Stanford manipulator, rank(J)< 6

* Note that the columns the Jacobian of a kinematically redundant manipulator
are never linearly independent
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Singularities

e But the rank of the Jacobian is not necessarily constant... it will
depend upon the configuration, q

e Definition: we say that any configuration in which the rank of J is
less than its maximum is a singular configuration

— i.e. any configuration that causes J to lose rank is a singular
configuration

e Characteristics of singularities:
— At a singularity, motion in some directions will not be possible

— At and near singularities, bounded end effector velocities would require
unbounded joint velocities

— At and near singularities, bounded joint torques may produce
unbounded end effector forces and torques

— Singularities often occur along the workspace boundary (i.e. when the
arm is fully extended)
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Singularities

e How do we determine singularities?

— Simple: construct the Jacobian and observe when it will lose rank
e EX:two link manipulator

— Previously, we found J to be:

[ — a;S; — @Sy, —aySy, ]
a,C, +a,Cy, a,Cy;
0 0
J(q)= 0 0
0 0

— This loses rank if we can find some a such that:
J,=ad, foraeR
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Singularities

e Thisis equivalent to the following:

as, +a,s,, = a(a,s,,)

a.c, +a,c,, = a(a,c,,)
e Thusifs,;,=s5s,, we can always find an a that will reduce the rank of J
e Thus 8, =0,rare two singularities
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Determining Singular Configurations

e |n general, all we need to do is observe how the rank of the
Jacobian changes as the configuration changes

e But it is not always as easy as the last example to observe
how the rank changes

e There are some shortcuts for common manipulators:
decoupling singularities
— Analogous to kinematic decoupling

— Assume that we have a 6DOF manipulator and that we can break the
Jacobian into a block form

— Then we can separate singularities into arm singularities and wrist
singularities
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Decoupling of Singularities

e Assume that we have a 6DOF manipulator that has a 3-axis arm and a spherical
wrist
— thus the Jacobian is 6x6 and the maximum rank J can have is 6
— Now we can say that the manipulator is in a singular configuration if det(J(q)) =0
e For the case of a kinematically decoupled manipulator, we can break up the
Jacobian as follows:
— Where J, and J, are represent the position and orientation portions of the Jacobian
— J,is given by the following:
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Decoupling of Singularities

 Now, one further assumption: 0,=0,=0.=0,=0
— This allows us to note the form of Jo:

0O 0 O
e
z, z, Z

— And we can split the total manipulator Jacobian as follows:

J _ |:J11 O :|
J21 J22
— Thus we can say:
det(J) = det(J,, )det(J,, )
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Wrist singularities

e To determine the wrist singularities, we observe the determinant of J,,
Jp = [23 Z, 25]
e Thus the J,, has rank 3 when the three axes are linearly independent
— This is always true, except when two of the axes are collinear
— i.e. 6;=0, ware the singularities for a spherical wrist

@ZC <5
0
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Arm singularities

e To determine the arm singularities, we observe the determinant of J,,
— First, if the i*" joint is revolute, the i*" column is J,, is given as follows:

J11,i = [Zi—1 X (O —0;4 )]

— First, if the i*" joint is prismatic, the i*" column is J,, is given as follows:

J11,i = [Zi—1]

e We will now give examples for the common configurations we have been
using: elbow, spherical, and SCARA manipulators
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Ex: elbow manipulator

e To determine the arm singularities, we observe the determinant of J,,
— First, J, is given as follows:

Jiy =12, X(Oc _Oo) Z, X(Oc _01) Z, X(Oc _02)]
—a,S,C, — a331023 —a,S,Cy — a332301 - 8301823
- 820102 + a301023 - 323132 - 8381823 - a331323

0 a,C, +a;Cy3 a;Cy; Vi V>

— The determinant of J,; is:

det(J,,) = a,a,8,(a,¢, + a,¢,;)
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Ex: elbow manipulator

e The determinant of J,, is:
det(J11) = a,d8;S; (3202 + 83023)

— Thus the arm is singular whens; =0, i.e. 6,=0, x
— This corresponds to the elbow being fully extended or fully retracted:

N
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Ex: elbow manipulator

e The determinant of J,, is:
det(J;,) = @,8,5;(a,C, +a;Cys)
— Thus the arm is also singular when a,¢,+ a;¢,;=0
— This corresponds to the wrist center intersecting the z, axis:

A <0 +ZU

N

— But this is not possible if there is a shoulder offset:
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Ex: spherical manipulator

e Since there is no ‘elbow’, the only singularity is when the wrist

center intersects the base axis
20

A
KB

The Interventional Centre <+ 8§=Sersity el 4



Ex: SCARA manipulator

e First, we observe the construction of the Jacobian:
—a;5,-a8,5, -as, 0
Jiy =| a,c;+a,Cy, ac, O
0 0 —1

¢ The determinantis: 1

det(J,,)=a °c,s,, —a,°s,C,, L0y =00

= 312(01312 - S1C12)
= é712(C1 (S1C2 + 0132)_ S; (C1C2 —S$1S; ))

2
=a,’s, 0

e Thus, the SCARA is singular
fors,=0,i.e. 6,=0, 7 N
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Force/torque relationships

e Similar to the relationship between the joint velocities and the end
effector velocities, we are interested in expressing the relationship
between the joint torques and the forces and moments at the end
effector

— Important for dynamics, force control, etc

e Let the vector of forces and moments at the end effector be
representedas: F=|F, F, £, n,_ n, n,|
e Then we can express the joint torques, 7, as:
T = JT(q)F
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Force/torque relationships

e Example: for a force F applied to the end of a planar two-link
manipulator, what are the resulting joint torques?

— First, remember that the Jacobian is: 3{
- a1 —8S;; — a5y, |
a,Cy + 8,0y, a,Cy,
0 0
J(a) =

) 0 0

0 0
L 1 1 -
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Force/torque relationships

e Example: for a force F applied to the end of a planar two-link
manipulator, what are the resulting joint torques?

— Thus the joint torques are: Y

B n '

T =

|:Fx(_ as, _32312)+ F, (3101 + 82012)}
Fx(_ a2312)"'Fy("’72012)
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Inverse velocity

e We have developed the Jacobian as a mapping from joint velocities to end
effector velocities:

&=Jq
e Now we want the inverse: what are the joint velocities for a specified end
effector velocity?
e Simple case: if the Jacobian is square and nonsingular,
G=J7¢
¢ In all other cases, we need another method

e For systems that do not have exactly 6DOF, we cannot directly invert the
Jacobian
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Next class...

e Introduction to dynamics
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