## Deriving $J_{\omega}$

- Now $J_{\omega}$ can simply be written as follows:

$$
J_{\omega}=\left[\begin{array}{llll}
\rho_{1} z_{0}^{0} & \rho_{2} z_{1}^{0} & \cdots & \rho_{n} z_{n-1}^{0}
\end{array}\right]
$$

- There are $n$ columns, each is $3 \times 1$, thus $J_{\omega}$ is $3 \times n$


## Deriving $J_{v}$

- Linear velocity of the end effector:

$$
\dot{o}_{n}^{0}=\sum_{i=1}^{n} \frac{\partial o_{n}^{0}}{\partial q_{i}} \dot{q}_{i}
$$

- Therefore we can simply write the $i^{\text {th }}$ column of $J_{v}$ as:

$$
J_{v_{i}}=\frac{\partial o_{n}^{0}}{\partial q_{i}}
$$

- However, the linear velocity of the end effector can be due to the motion of revolute and/or prismatic joints
- Thus the end-effector velocity is a linear combination of the velocity due to the motion of each joint
- w/o L.O.G. we can assume all joint velocities are zero other than the $i^{\text {th }}$ joint
- This allows us to examine the end-effector velocity due to the motion of either a revolute or prismatic joint


## Deriving $J_{v}$

- End-effector velocity due to prismatic joints
- Assume all joints are fixed other than the prismatic joint $d_{i}$
- The motion of the end-effector is pure translation along $z_{i-1}$

$$
\dot{o}_{n}^{0}=\dot{d}_{i} R_{i-1}^{0}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\dot{d}_{i} z_{i-1}^{0}
$$

- Therefore, we can write the $i^{\text {th }}$ column of the Jacobian:

$$
J_{v_{i}}=z_{i-1}^{0}
$$



## Deriving $J_{v}$

- End-effector velocity due to revolute joints
- Assume all joints are fixed other than the revolute joint $\theta_{i}$
- The motion of the end-effector is given by:

$$
\dot{o}_{n}^{0}=\omega_{i-1, i}^{0} \times r=\dot{\theta}_{i} z_{i-1}^{0} \times r
$$

- Where the term $r$ is the distance from the tool frame $o_{n}$ to the frame $o_{i-1}$

$$
\dot{o}_{n}^{0}=\dot{\theta}_{i} z_{i-1}^{0} \times\left(o_{n}-o_{i-1}\right)
$$

- Thus we can write the $i^{\text {th }}$ column of $J_{v}$ :

$$
J_{v_{i}}=Z_{i-1}^{0} \times\left(O_{n}-O_{i-1}\right)
$$



## The complete Jacobian

- The $i^{\text {th }}$ column of $J_{v}$ is given by:

$$
J_{v_{i}}=\left\{\begin{array}{cc}
z_{i-1} \times\left(o_{n}-o_{i-1}\right) & \text { for } i \text { revolute } \\
z_{i-1} & \text { for } i \text { prismatic }
\end{array}\right.
$$

- The $f^{\text {th }}$ column of $J_{\omega}$ is given by:

$$
J_{\omega_{i}}=\left\{\begin{array}{cc}
z_{i-1} & \text { for } i \text { revolute } \\
0 & \text { for } i \text { prismatic }
\end{array}\right.
$$

## Example: two-link planar manipulator

- Calculate $J$ for the following manipulator:
- Two joint angles, thus $J$ is $6 \times 2$

$$
J(q)=\left[\begin{array}{cc}
z_{0}^{0} \times\left(O_{2}-O_{0}\right) & z_{1}^{0} \times\left(o_{2}-O_{1}\right) \\
z_{0}^{0} & z_{1}^{0}
\end{array}\right]
$$

- Where:

$$
o_{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], o_{1}=\left[\begin{array}{c}
a_{1} c_{1} \\
a_{1} s_{1} \\
0
\end{array}\right], o_{2}=\left[\begin{array}{c}
a_{1} c_{1}+a_{2} c_{12} \\
a_{1} s_{1}+a_{2} s_{12} \\
0
\end{array}\right] \quad z_{0}^{0}=z_{1}^{0}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

$$
J(q)=\left[\begin{array}{cc}
-a_{1} s_{1}-a_{2} s_{12} & -a_{2} s_{12} \\
a_{1} c_{1}+a_{2} c_{12} & a_{2} c_{12} \\
0 & 0 \\
0 & 0 \\
0 & 0 \\
1 & 1
\end{array}\right]
$$



## Example: velocity of an arbitrary point

- We can also use the Jacobian to calculate the velocity of any arbitrary point on the manipulator

$$
J(q)=\left[\begin{array}{ccc}
z_{0}^{0} \times\left(o_{c}-o_{0}\right) & z_{1}^{0} \times\left(o_{c}-o_{1}\right) & 0 \\
z_{0}^{0} & z_{1}^{0} & 0
\end{array}\right]
$$

- This is identical to placing the tool frame at any point of the manipulator



## Example: Stanford manipulator

- The configuration of the Stanford manipulator allows us to make the following simplifications:

$$
\begin{aligned}
& J_{i}=\left[\begin{array}{c}
z_{i-1} \times\left(o_{6}-o_{i-1}\right) \\
z_{i-1}
\end{array}\right], i=1,2 \\
& J_{3}=\left[\begin{array}{c}
z_{2} \\
0
\end{array}\right] \\
& J_{i}=\left[\begin{array}{c}
z_{i-1} \times\left(o_{6}-0\right) \\
z_{i-1}
\end{array}\right], i=4,5,6
\end{aligned}
$$

- Where $o$ is the common origin of the $o_{3}, o_{4}$, and $o_{5}$ frames



## Example: Stanford manipulator

- From the forward kinematics of the Stanford manipulator, we calculated the homogeneous transformations for each joint:

$$
\begin{aligned}
& A_{1}=\left[\begin{array}{cccc}
c_{1} & 0 & -s_{1} & 0 \\
s_{1} & 0 & c_{1} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], A_{2}=\left[\begin{array}{cccc}
c_{2} & 0 & s_{2} & 0 \\
s_{2} & 0 & -c_{2} & 0 \\
0 & 1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}\right], A_{3}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A_{4}=\left[\begin{array}{cccc}
c_{4} & 0 & -s_{4} & 0 \\
s_{4} & 0 & c_{4} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], A_{5}=\left[\begin{array}{cccc}
c_{5} & 0 & s_{5} & 0 \\
s_{5} & 0 & -c_{5} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], A_{6}=\left[\begin{array}{cccc}
c_{6} & -s_{6} & 0 & 0 \\
s_{6} & c_{6} & 0 & 0 \\
0 & 0 & 1 & d_{6} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

## Example: Stanford manipulator

- To complete the derivation of the Jacobian, we need the following quantities: $z_{0}, z_{1}, \ldots$ $, Z_{5}, O_{0}, O_{1}, O_{3}, O_{6}$
- $o_{3}$ is $o$ and $o_{0}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]^{T}$
- We determine these quantities by noting the construction of the $T$ matrices
- $o_{j}$ is the first three elements of the last column of $T_{j}{ }^{0}$
- $z_{j}$ is $R_{j}{ }^{0} k$, or equivalently, the first three elements of the third column of $T_{j}{ }^{0}$
- Thus we can calculate the Jacobian by first determining the $T_{j}^{0}$
- Thus the $z_{i}$ terms are given as follows:

$$
z_{0}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], z_{1}=\left[\begin{array}{c}
-s_{1} \\
c_{1} \\
0
\end{array}\right], z_{2}=\left[\begin{array}{c}
c_{1} s_{2} \\
s_{1} s_{2} \\
c_{2}
\end{array}\right], z_{3}=\left[\begin{array}{c}
c_{1} s_{2} \\
s_{1} s_{2} \\
c_{2}
\end{array}\right], z_{4}=\left[\begin{array}{c}
-c_{1} c_{2} s_{4}-s_{1} c_{4} \\
-s_{1} c_{2} s_{4}+c_{1} c_{4} \\
s_{2} s_{4}
\end{array}\right], z_{5}=\left[\begin{array}{c}
c_{1} c_{2} c_{4} s_{5}-s_{1} s_{4} s_{5}+c_{1} s_{2} c_{5} \\
s_{1} c_{2} c_{4} s_{5}+c_{1} s_{4} s_{5}+s_{1} s_{2} c_{5} \\
-s_{2} c_{4} s_{5}+c_{2} c_{5}
\end{array}\right]
$$

## Example: Stanford manipulator

- And the $o_{i}$ terms are given as:

$$
o_{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], o_{1}=\left[\begin{array}{c}
0 \\
0 \\
d_{2}
\end{array}\right], o_{3}=\left[\begin{array}{c}
c_{1} s_{2} d_{3}-s_{1} d_{2} \\
s_{1} s_{2} d_{3}+c_{1} d_{2} \\
c_{2} d_{3}
\end{array}\right], o_{6}=\left[\begin{array}{c}
c_{1} s_{2} d_{3}-s_{1} d_{2}+d_{6}\left(c_{1} c_{2} c_{4} s_{5}+c_{1} c_{5} s_{2}-s_{1} s_{4} s_{5}\right) \\
s_{1} s_{2} d_{3}-c_{1} d_{2}+d_{6}\left(c_{1} s_{4} s_{5}+c_{2} c_{4} s_{1} s_{5}+c_{5} s_{1} s_{2}\right) \\
c_{2} d_{3}+d_{6}\left(c_{2} c_{5}-c_{4} s_{2} s_{5}\right)
\end{array}\right]
$$

- Finally, the Jacobian can be assembled as follows:

$$
J_{1}=\left[\begin{array}{c}
-d_{y} \\
d_{x} \\
0 \\
0 \\
0 \\
1
\end{array}\right], J_{2}=\left[\begin{array}{c}
c_{1} d_{z} \\
s_{1} d_{z} \\
-s_{1} d_{y}-c_{1} d_{x} \\
-s_{1} \\
c_{1} \\
0
\end{array}\right], J_{3}=\left[\begin{array}{c}
c_{1} s_{2} \\
s_{1} s_{2} \\
c_{2} \\
0 \\
0 \\
0
\end{array}\right], J_{4}=\left[\begin{array}{c}
s_{1} s_{2}\left(d_{z}-o_{3, z}\right)+c_{2}\left(d_{y}-o_{3, y}\right) \\
-c_{1} s_{1}\left(d_{z}-o_{3, z}\right)+c_{2}\left(d_{x}-o_{3, x}\right) \\
-c_{1} c_{2} s_{4}-s_{1} c_{4} \\
s_{2} s_{4} \\
0 \\
0
\end{array}\right]
$$

## Example: Stanford manipulator

- Finally, the Jacobian can be assembled as follows:

$$
\begin{aligned}
& J_{5}=\left[\begin{array}{c}
\left(-s_{1} c_{2} s_{4}+c_{1} c_{4}\right)\left(d_{z}-o_{3, z}\right)-s_{2} s_{4}\left(d_{y}-o_{3, y}\right) \\
\left(-c_{1} c_{2} s_{4}+s_{1} c_{4}\right)\left(d_{z}-o_{3, z}\right)+s_{2} s_{4}\left(d_{x}-o_{3, x}\right) \\
\left(-c_{1} c_{2} s_{4}-s_{1} c_{4}\right)\left(d_{y}-o_{3, y}\right)+\left(s_{1} c_{2} s_{4}-c_{1} c_{4}\right)\left(d_{x}-o_{3, x}\right) \\
-c_{1} c_{2} c_{4}-s_{1} c_{4} \\
s_{2} s_{4} \\
0
\end{array}\right] \\
& J_{6}=\left[\begin{array}{c}
\left(s_{1} c_{2} c_{4} s_{5}+c_{1} s_{4} s_{5}+s_{1} s_{2} c_{5}\right)\left(d_{y}-o_{3, y}\right)+\left(s_{2} c_{4} s_{5}-c_{2} c_{5}\right)\left(d_{y}-o_{3, y}\right) \\
-\left(c_{1} c_{2} c_{4} s_{5}-s_{1} s_{4} s_{5}+c_{1} s_{2} c_{5}\right)\left(d_{z}-o_{3, z}\right)+\left(s_{2} c_{4} s_{5}-c_{2} c_{5}\right)\left(d_{x}-o_{3, x}\right) \\
c_{1} c_{2} c_{4} s_{5}-s_{1} s_{4} s_{5}+c_{1} s_{2} c_{5} \\
s_{1} c_{2} c_{4} s_{5}+c_{1} s_{4} s_{5}+s_{1} s_{2} c \\
-s_{2} c_{4} s_{5}+c_{2} c_{5} \\
0
\end{array}\right]
\end{aligned}
$$

## Example: SCARA manipulator

- Jacobian will be a $6 \times 4$ matrix

$$
\begin{aligned}
J & =\left[\begin{array}{cccc}
z_{0}^{0} \times\left(o_{4}-O_{0}\right) & z_{1}^{0} \times\left(o_{4}-o_{1}\right) & z_{2}^{0} & z_{3}^{0} \times\left(o_{4}-O_{3}\right) \\
z_{0}^{0} & z_{1}^{0} & 0 & z_{3}^{0}
\end{array}\right] \\
& =\left[\begin{array}{cccc}
z_{0}^{0} \times\left(o_{4}-o_{0}\right) & z_{1}^{0} \times\left(o_{4}-o_{1}\right) & z_{2}^{0} & 0 \\
z_{0}^{0} & z_{1}^{0} & 0 & z_{3}^{0}
\end{array}\right]
\end{aligned}
$$

- Thus we will need to determine the following quantities: $z_{0}, z_{1}, \ldots, z_{3}, o_{0}, o_{1}$, $O_{2}, O_{4}$
- Since all the joint axes are parallel, we can see the following:

$$
z_{0}^{0}=z_{1}^{0}=\hat{k}, z_{2}^{0}=z_{3}^{0}=-\hat{k}
$$

- From the homogeneous transformation matrices we can determine the origins of the coordinate frames


## Example: SCARA manipulator

- Thus $o_{0}, o_{1}, o_{2}, o_{4}$ are given by:

$$
o_{0}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], o_{1}=\left[\begin{array}{c}
a_{1} c_{1} \\
a_{1} s_{1} \\
0
\end{array}\right], o_{4}=\left[\begin{array}{c}
a_{1} c_{1}+a_{2} c_{12} \\
a_{1} s_{1}+a_{2} s_{12} \\
d_{3}-d_{4}
\end{array}\right]
$$

- Finally, we can assemble the Jacobian:

$$
J=\left[\begin{array}{cccc}
-a_{1} s_{1}-a_{2} s_{12} & -a_{2} s_{12} & 0 & 0 \\
a_{1} c_{1}+a_{2} c_{12} & a_{2} c_{12} & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & -1
\end{array}\right]
$$

## Next class...

- Formal definition of singularities
- Tool velocity
- manipulability

