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Ch. 6 Single Variable Control 
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Single variable control 

• How do we determine the motor/actuator inputs so as to command the 
end effector in a desired motion? 

• In general, the input voltage/current does not create instantaneous 
motion to a desired configuration 

– Due to dynamics (inertia, etc) 
– Nonlinear effects 

• Backlash 
• Friction 

– Linear effects 
• Compliance  

• Thus, we need three basic pieces of information:  
1. Desired joint trajectory 
2. Description of the system (ODE = Ordinary Differential Equation) 
3. Measurement of actual trajectory 
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SISO overview 

• Typical single input, single output (SISO) system: 
 
 
 
 
 

• We want the robot tracks the desired trajectory and rejects external 
disturbances 

• We already have the desired trajectory, and we assume that we can 
measure the actual trajectories 

• Thus the first thing we need is a system description 
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SISO overview 

• Need a convenient input-output description of a SISO system 
• Two typical representations for the plant: 

– Transfer function 
– State-space 

• Transfer functions represent the system dynamics in terms of the 
Laplace transform of the ODEs that represent the system dynamics 

• For example, if we have a 1DOF system described by: 
 

• We want the representation in the Laplace domain: 
 
 

• Therefore, we give the transfer function as: 
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Review of the Laplace transform 

• Laplace transform creates algebraic equations from differential 
equations 

• The Laplace transform is defined as follows: 
 
 

• For example, Laplace transform of a derivative: 
 
 
 

– Integrating by parts: 
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Review of the Laplace transform 

• Similarly, Laplace transform of a second derivative: 
 
 
 

• Thus, if we have a generic 2nd order system described by the following 
ODE: 
 

• And we want to get a transfer function representation of the system, 
take the Laplace transform of both sides: 

( ){ } ( ) ( ) ( ) ( ) ( )002

0
2

2

2

2

xsxsxsdt
dt

txde
dt

txdtx st  −−==








= ∫
∞

−LL

( ) ( ) ( ) ( )tFtkxtxbtxm =++ 

( ){ } ( ){ } ( ){ } ( ){ }
( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )sFskxxssxbxsxsxsm

tFtxktxbtxm
=+−+−−

=++

0002 

 LLLL



ES159/259 

Review of the Laplace transform 

• Continuing: 
 
 

• The transient response is the solution of the above ODE if the forcing 
function F(t) = 0 

• Ignoring the transient response, we can rearrange: 
 
 

• This is the input-output transfer function and the denominator is called 
the characteristic equation 
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Review of the Laplace transform 

• Properties of the Laplace transform 
– Takes an ODE to a algebraic equation 
– Differentiation in the time domain is multiplication by s in the Laplace 

domain 
– Integration in the time domain is multiplication by 1/s in the Laplace domain 
– Considers initial conditions 

• i.e. transient and steady-state response 
– The Laplace transform is a linear operator 
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Review of the Laplace transform 

• for this class, we will rely on a table of Laplace transform pairs for 
convenience 
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Review of the Laplace transform 

 
Time domain Laplace domain 
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SISO overview 

• Typical single input, single output (SISO) system: 
 
 
 
 
 

• We want the robot tracks the desired trajectory and rejects external 
disturbances 

• We already have the desired trajectory, and we assume that we can 
measure the actual trajectories 

• Thus the first thing we need is a system description 
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SISO overview 

• Need a convenient input-output description of a SISO system 
• Two typical representations for the plant: 

– Transfer function 
– State-space 

• Transfer functions represent the system dynamics in terms of the 
Laplace transform of the ODEs that represent the system dynamics 

• For example, if we have a 1DOF system described by: 
 

• We want the representation in the Laplace domain: 
 
 

• Therefore, we give the transfer function as: 
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System descriptions 

• A generic 2nd order system can be described by the following ODE: 
 

• And we want to get a transfer function representation of the system, 
take the Laplace transform of both sides: 
 
 
 

• Ignoring the transient response, we can rearrange: 
 
 

• This is the input-output transfer function and the denominator is called 
the characteristic equation 
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Example: motor dynamics 

• DC motors are ubiquitous in robotics applications 
• Here, we develop a transfer function that describes the relationship 

between the input voltage and the output angular displacement 
• First, a physical description of the most common motor: permanent 

magnet… 

am iK φτ 1=
torque on the rotor: 
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Physical instantiation 
stator 

rotor 
(armature) 

commutator 
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Motor dynamics 

• When a conductor moves in a magnetic field, a voltage is generated 
– Called back EMF: 

 
– Where ωm is the rotor angular velocity 

 

mb KV φω2=

armature inductance 
armature resistance 
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Motor dynamics 

• Since this is a permanent magnet motor, the magnetic flux is constant, 
we can write: 
 

• Similarly:  
 
 
 

• Km and Kb are numerically equivalent, thus there is one constant 
needed to characterize a motor 
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dt
dKKV m

bmb
θφω == 2

torque constant 

back EMF constant 



ES159/259 

Motor dynamics 

• This constant is determined from torque-speed curves 
– Remember, torque and displacement are work conjugates 

 
 
 
 
 
 
 
 
 

–  τ0 is the blocked torque 
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Single link/joint dynamics 

• Now, lets take our motor and connect it to a link 
• Between the motor and link there is a gear such that: 
• Lump the actuator and gear inertias: 
• Now we can write the dynamics of this mechanical system: 
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Motor dynamics 

• Now we have the ODEs describing this system in both the electrical 
and mechanical domains: 
 
 
 
 

• In the Laplace domain: 
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Motor dynamics 

• These two can be combined to define, for example, the input-output 
relationship for the input voltage, load torque, and output displacement: 
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Motor dynamics 

• Remember, we want to express the system as a transfer function from 
the input to the output angular displacement 

– But we have two potential inputs:  the load torque and the armature voltage 
– First, assume τL = 0 and solve for Θm(s): 
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Motor dynamics 

• Now consider that V(s) = 0 and solve for Θm(s): 
 
 
 
 
 
 

• Note that this is a function of the gear ratio 
– The larger the gear ratio, the less effect external torques have on the 

angular displacement 
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Motor dynamics 

• In this system there are two ‘time constants’ 
– Electrical: L/R 
– Mechanical: Jm/Bm 

• For intuitively obvious reasons, the electrical time constant is assumed 
to be small compared to the mechanical time constant 

– Thus, ignoring electrical time constant will lead to a simpler version of the 
previous equations: 

( )
( ) [ ]RKKBsJs

r
s
s

mbmmL

m

/
/1
++

−
=

τ
Θ

( )
( ) [ ]RKKBsJs

RK
sV
s

mbmm

mm

/
/
++

=
Θ



ES159/259 

Motor dynamics 

• Rewriting these in the time domain gives: 
 
 
 
 
 
 
 

• By superposition of the solutions of these two linear 2nd order ODEs: 
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Motor dynamics 

• Therefore, we can write the dynamics of a DC motor attached to a load 
as: 
 

– Note that u(t) is the input and d(t) is the disturbance (e.g. the dynamic 
coupling from motion of other links) 

• To represent this as a transfer function, take the Laplace transform: 
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Setpoint controllers 

• We will first discuss three initial controllers: P, PD and PID 
– Both attempt to drive the error (between a desired trajectory and the actual 

trajectory) to zero 
• The system can have any dynamics, but we will concentrate on the 

previously derived system 



Proportional Controller 

ES159/259 

( ) ( )teKtu p=

( ) ( )tEKsU p=

• Control law: 
 

– Where e(t) = θd(t) - θ(t) 
• in the Laplace domain: 

 
• This gives the following closed-loop system: 

pK
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PD controller 

• Control law: 
 

– Where e(t) = θd(t) - θ(t) 
• in the Laplace domain: 

 
• This gives the following closed-loop system: 
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PD controller 

• This system can be described by: 
 
 

• Where, again, U(s) is: 
 

• Combining these gives us: 
 
 

• Solving for Θ gives: 
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PD controller 

• The denominator is the characteristic polynomial 
• The roots of the characteristic polynomial determine the performance of 

the system  
 
 

• If we think of the closed-loop system as a damped second order 
system, this allows us to choose values of Kp and Kd 
 

• Thus Kp and Kd are: 
 
 
 

• A natural choice is ζ = 1 (critically damped) 
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PD controller 

• Limitations of the PD controller: 
– for illustration, let our desired trajectory be a step input and our disturbance 

be a constant as well: 
 
 

– Plugging this into our system description gives: 
 
 

– For these conditions, what is the steady-state value of the displacement? 
 
 

– Thus the steady state error is –D/Kp 

– Therefore to drive the error to zero in the presence of large disturbances, 
we need large gains… so we turn to another controller 
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PID controller 

• Control law: 
 

• In the Laplace domain: 
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PID controller 

• The integral term eliminates the steady state error that can arise from a 
large disturbance 

• How to determine PID gains 
1. Set Ki = 0 and solve for Kp and Kd 

2. Determine Ki to eliminate steady state error 
• However, we need to be careful of the stability conditions 
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PID controller 

• Stability 
– The closed-loop stability of these systems is determined by the roots of the 

characteristic polynomial 
– If all roots (potentially complex) are in the ‘left-half’ plane, our system is 

stable 
• for any bounded input and disturbance 

– A description of how the roots of the characteristic equation change (as a 
function of controller gains) is very valuable 

• Called the root locus 



Summary 
• Proportional 

– A pure proportional controller will have a steady-state error 
– Adding a integration term will remove the bias 
– High gain (Kp) will produce a fast system 
– High gain may cause oscillations and may make the system unstable 
– High gain reduces the steady-state error 

• Integral 
– Removes steady-state error 
– Increasing Ki accelerates the controller 
– High Ki may give oscillations 
– Increasing Ki will increase the settling time 

• Derivative 
– Larger Kd decreases oscillations 
– Improves stability for low values of Kd 

– May be highly sensitive to noise if one takes the derivative of a noisy error 
– High noise leads to instability 
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