Ch. 6 Single Variable Control

Single variable control

- How do we determine the motor/actuator inputs so as to command the end effector in a desired motion?
- In general, the input voltage/current does not create instantaneous motion to a desired configuration
- Due to dynamics (inertia, etc)
- Nonlinear effects
- Backlash
- Friction
- Linear effects
- Compliance
- Thus, we need three basic pieces of information:

1. Desired joint trajectory
2. Description of the system (ODE = Ordinary Differential Equation)
3. Measurement of actual trajectory

SISO overview

－Typical single input，single output（SISO）system：

－We want the robot tracks the desired trajectory and rejects external disturbances
－We already have the desired trajectory，and we assume that we can measure the actual trajectories
－Thus the first thing we need is a system description

SISO overview

- Need a convenient input-output description of a SISO system
- Two typical representations for the plant:
- Transfer function
- State-space
- Transfer functions represent the system dynamics in terms of the Laplace transform of the ODEs that represent the system dynamics
- For example, if we have a 1 DOF system described by:

$$
\tau(t)=J \ddot{\theta}(t)+B \dot{\theta}(t)
$$

- We want the representation in the Laplace domain:

$$
\begin{aligned}
\tau(s) & =s^{2} J \theta(s)+s B \theta(s) \\
& =s(s J+B) \theta(s)
\end{aligned}
$$

- Therefore, we give the transfer function as:

$$
P(s) \equiv \frac{\theta(s)}{\tau(s)}=\frac{1}{s(s J+B)}=\frac{1 / J}{s(s+B / J)}
$$

Review of the Laplace transform

- Laplace transform creates algebraic equations from differential equations
- The Laplace transform is defined as follows:

$$
x(s)=\int_{0}^{\infty} e^{-s t} x(t) d t
$$

- For example, Laplace transform of a derivative:

$$
L\{\dot{x}(t)\}=L\left\{\frac{d x(t)}{d t}\right\}=\int_{0}^{\infty} e^{-s t} \frac{d x(t)}{d t} d t
$$

- Integrating by parts:

$$
\begin{aligned}
L\left\{\frac{d x(t)}{d t}\right\} & =\left.e^{-s t} x(t)\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} x(t) d t \\
& =s x(s)-x(0) \\
& E S 159 / 259
\end{aligned}
$$

Review of the Laplace transform

- Similarly, Laplace transform of a second derivative:

$$
L\{\ddot{x}(t)\}=L\left\{\frac{d^{2} x(t)}{d t^{2}}\right\}=\int_{0}^{\infty} e^{-s t} \frac{d^{2} x(t)}{d t^{2}} d t=s^{2} x(s)-s x(0)-\dot{x}(0)
$$

- Thus, if we have a generic $2^{\text {nd }}$ order system described by the following ODE:

$$
m \ddot{x}(t)+b \dot{x}(t)+k x(t)=F(t)
$$

- And we want to get a transfer function representation of the system, take the Laplace transform of both sides:

$$
\begin{aligned}
& m L\{\ddot{x}(t)\}+b L\{\dot{x}(t)\}+k L\{x(t)\}=L\{F(t)\} \\
& m\left(s^{2} x(s)-s x(0)-\dot{x}(0)\right)+b(s x(s)-x(0))+k x(s)=F(s)
\end{aligned}
$$

Review of the Laplace transform

－Continuing：

$$
\left(m s^{2}+b s+k\right) x(s)=F(s)+m \dot{x}(0)+(m s+c) x(0)
$$

－The transient response is the solution of the above ODE if the forcing function $F(t)=0$
－Ignoring the transient response，we can rearrange：

$$
\frac{x(s)}{F(s)}=\frac{1}{m s^{2}+b s+k}
$$

－This is the input－output transfer function and the denominator is called the characteristic equation

Review of the Laplace transform

－Properties of the Laplace transform
－Takes an ODE to a algebraic equation
－Differentiation in the time domain is multiplication by s in the Laplace domain
－Integration in the time domain is multiplication by $1 / s$ in the Laplace domain
－Considers initial conditions
－i．e．transient and steady－state response
－The Laplace transform is a linear operator

Review of the Laplace transform

- for this class, we will rely on a table of Laplace transform pairs for convenience

Time domain	Laplace domain
$x(t)$	$x(s)=L\{x(t)\}=\int_{0}^{\infty} e^{-s t} x(t) d t$
$\dot{x}(t)$	$s x(s)-x(0)$
$\ddot{x}(t)$	$s^{2} x(s)-s x(0)-\dot{x}(0)$
$C t$	$\frac{C}{s^{2}}$
step	$\frac{1}{s}$
$\cos (\omega t)$	$\frac{s}{s^{2}+\omega^{2}}$
$\sin (\omega t)$	$\frac{\omega}{s^{2}+\omega^{2}}$

Review of the Laplace transform

Time domain	Laplace domain
$x(t-\alpha) H(t-\alpha)$	$e^{-a s} x(s)$
$e^{-a t} x(t)$	$x(s+a)$
$x(a t)$	$\frac{1}{a} x\left(\frac{s}{a}\right)$
$C \delta(t)$	C

SISO overview

－Typical single input，single output（SISO）system：

－We want the robot tracks the desired trajectory and rejects external disturbances
－We already have the desired trajectory，and we assume that we can measure the actual trajectories
－Thus the first thing we need is a system description

SISO overview

- Need a convenient input-output description of a SISO system
- Two typical representations for the plant:
- Transfer function
- State-space
- Transfer functions represent the system dynamics in terms of the Laplace transform of the ODEs that represent the system dynamics
- For example, if we have a 1 DOF system described by:

$$
\tau(t)=J \ddot{\theta}(t)+B \dot{\theta}(t)
$$

- We want the representation in the Laplace domain:

$$
\begin{aligned}
\tau(s) & =s^{2} J \theta(s)+s B \theta(s) \\
& =s(s J+B) \theta(s)
\end{aligned}
$$

- Therefore, we give the transfer function as:

$$
P(s) \equiv \frac{\theta(s)}{\tau(s)}=\frac{1}{s(s J+B)}=\frac{1 / J}{s(s+B / J)}
$$

System descriptions

- A generic $2^{\text {nd }}$ order system can be described by the following ODE:

$$
m \ddot{X}(t)+b \dot{X}(t)+k x(t)=F(t)
$$

- And we want to get a transfer function representation of the system, take the Laplace transform of both sides:

$$
\begin{aligned}
& m L\{\ddot{x}(t)\}+b L\{\dot{x}(t)\}+k L\{x(t)\}=L\{F(t)\} \\
& m\left(s^{2} x(s)-s x(0)-\dot{x}(0)\right)+b(s x(s)-x(0))+k x(s)=F(s) \\
& \left(m s^{2}+b s+k\right) x(s)=F(s)+m \dot{x}(0)+(m s+c) x(0)
\end{aligned}
$$

- Ignoring the transient response, we can rearrange:

$$
\frac{x(s)}{F(s)}=\frac{1}{m s^{2}+b s+k}
$$

- This is the input-output transfer function and the denominator is called the characteristic equation

Example：motor dynamics

－DC motors are ubiquitous in robotics applications
－Here，we develop a transfer function that describes the relationship between the input voltage and the output angular displacement
－First，a physical description of the most common motor：permanent magnet．．．
torque on the rotor：

$$
\tau_{m}=K_{1} \phi i_{a}
$$

Physical instantiation

Motor dynamics

- When a conductor moves in a magnetic field, a voltage is generated
- Called back EMF:

$$
V_{b}=K_{2} \phi \omega_{m}
$$

- Where ω_{m} is the rotor angular velocity

Motor dynamics

- Since this is a permanent magnet motor, the magnetic flux is constant, we can write:
- Similarly:

$$
\tau_{m}=K_{1} \phi i_{a}=K_{m} i_{a} \quad \text { torque constant }
$$

$$
V_{b}=K_{2} \phi \omega_{m}=K_{b} \frac{d \theta_{m}}{d t}{ }_{\text {back EMF constant }}
$$

- K_{m} and K_{b} are numerically equivalent, thus there is one constant needed to characterize a motor

Motor dynamics

- This constant is determined from torque-speed curves
- Remember, torque and displacement are work conjugates

- τ_{0} is the blocked torque

Single link/joint dynamics

- Now, lets take our motor and connect it to a link
- Between the motor and link there is a gear such that: $\theta_{m}=r \theta_{L}$
- Lump the actuator and gear inertias: $J_{m}=J_{a}+J_{g}$
- Now we can write the dynamics of this mechanical system:

$$
J_{m} \frac{d^{2} \theta_{m}}{d t^{2}}+B_{m} \frac{d \theta_{m}}{d t}=\tau_{m}-\frac{\tau_{L}}{r}=K_{m} i_{a}-\frac{\tau_{L}}{r}
$$

Motor dynamics

- Now we have the ODEs describing this system in both the electrical and mechanical domains:

$$
\begin{gathered}
L \frac{d i_{a}}{d t}+R i_{a}=V-K_{b} \frac{d \theta_{m}}{d t} \\
J_{m} \frac{d^{2} \theta_{m}}{d t^{2}}+B_{m} \frac{d \theta_{m}}{d t}=K_{m} i_{a}-\frac{\tau_{L}}{r}
\end{gathered}
$$

- In the Laplace domain:

$$
\begin{array}{r}
(L s+R) I_{a}(s)=V(s)-K_{b} s \Theta_{m}(s) \\
\left(J_{m} s^{2}+B_{m} s\right) \Theta_{m}(s)=K_{m} I_{a}(s)-\frac{\tau_{L}(s)}{r}
\end{array}
$$

Motor dynamics

- These two can be combined to define, for example, the input-output relationship for the input voltage, load torque, and output displacement:

Motor dynamics

- Remember, we want to express the system as a transfer function from the input to the output angular displacement
- But we have two potential inputs: the load torque and the armature voltage
- First, assume $\tau_{L}=0$ and solve for $\Theta_{m}(s)$:

$$
\begin{gathered}
\frac{\left(J_{m} s^{2}+B_{m} s\right) \Theta_{m}(s)}{K_{m}}=I_{a}(s) \longrightarrow \frac{(L s+R)\left(J_{m} s^{2}+B_{m} s\right)}{K_{m}} \Theta_{m}(s)=V(s)-K_{b} s \Theta_{m}(s) \\
\longrightarrow \frac{\Theta_{m}(s)}{V(s)}=\frac{K_{m}}{s\left[(L s+R)\left(J_{m} s+B_{m}\right)+K_{b} K_{m}\right]}
\end{gathered}
$$

Motor dynamics

- Now consider that $V(s)=0$ and solve for $\Theta_{m}(s)$:

$$
\begin{aligned}
I_{a}(s) & =\frac{-K_{b} s \Theta_{m}(s)}{L s+R} \longrightarrow\left(J_{m} s^{2}+B_{m} s\right) \Theta_{m}(s)=\frac{-K_{m} K_{b} s \Theta_{m}(s)}{L s+R}-\frac{\tau_{L}(s)}{r} \\
& \longrightarrow \frac{\Theta_{m}(s)}{\tau_{L}(s)}=\frac{-(L s+R) / r}{s\left[(L s+R)\left(J_{m} s+B_{m}\right)+K_{b} K_{m}\right]}
\end{aligned}
$$

- Note that this is a function of the gear ratio
- The larger the gear ratio, the less effect external torques have on the angular displacement

Motor dynamics

- In this system there are two 'time constants'
- Electrical: L/R
- Mechanical: J_{m} / B_{m}
- For intuitively obvious reasons, the electrical time constant is assumed to be small compared to the mechanical time constant
- Thus, ignoring electrical time constant will lead to a simpler version of the previous equations:

$$
\begin{aligned}
\frac{\Theta_{m}(s)}{V(s)} & =\frac{K_{m} / R}{s\left[J_{m} s+B_{m}+K_{b} K_{m} / R\right]} \\
\frac{\Theta_{m}(s)}{\tau_{L}(s)} & =\frac{-1 / r}{s\left[J_{m} s+B_{m}+K_{b} K_{m} / R\right]}
\end{aligned}
$$

Motor dynamics

- Rewriting these in the time domain gives:

$$
\begin{aligned}
& \frac{\Theta_{m}(s)}{V(s)}=\frac{K_{m} / R}{s\left[J_{m} s+B_{m}+K_{b} K_{m} / R\right]} \longrightarrow J_{m} \ddot{\theta}_{m}(t)+\left(B_{m}+K_{b} K_{m} / R\right) \dot{\theta}_{m}(t)=\left(K_{m} / R\right) N(t) \\
& \frac{\Theta_{m}(s)}{\tau_{L}(s)}=\frac{-1 / r}{s\left[J_{m} s+B_{m}+K_{b} K_{m} / R\right]} \longrightarrow J_{m} \ddot{\theta}_{m}(t)+\left(B_{m}+K_{b} K_{m} / R\right) \dot{\theta}_{m}(t)=-(1 / R) \tau_{L}(t)
\end{aligned}
$$

- By superposition of the solutions of these two linear $2^{\text {nd }}$ order ODEs:

$$
\underbrace{J_{m}}_{J} \ddot{\theta}_{m}(t)+\underbrace{\left(B_{m}+K_{b} K_{m} / R\right)}_{B} \dot{\theta}_{m}(t)=\underbrace{\left(K_{m} / R\right) N(t)}_{u(t)}-\underbrace{(1 / R) \tau_{L}(t)}_{d(t)}
$$

Motor dynamics

- Therefore, we can write the dynamics of a DC motor attached to a load as:

$$
J \ddot{\theta}(t)+B \dot{\theta}(t)=u(t)-d(t)
$$

- Note that $u(t)$ is the input and $d(t)$ is the disturbance (e.g. the dynamic coupling from motion of other links)
- To represent this as a transfer function, take the Laplace transform:

D

$$
\left(J s^{2}+B s\right) \Theta(s)=U(s)-D(s) \longrightarrow \xrightarrow{U+\nmid-} \xrightarrow{\frac{1}{J s+B}} \rightarrow \xrightarrow[\frac{1}{s}]{\Theta_{m}}
$$

Setpoint controllers

- We will first discuss three initial controllers: P, PD and PID
- Both attempt to drive the error (between a desired trajectory and the actual trajectory) to zero
- The system can have any dynamics, but we will concentrate on the previously derived system

Proportional Controller

- Control law:

$$
u(t)=K_{p} e(t)
$$

- Where $e(t)=\theta^{\prime}(t)-\theta(t)$
- in the Laplace domain:

$$
U(s)=K_{p} E(t)
$$

- This gives the following closed-loop system:

PD controller

- Control law:

$$
u(t)=K_{p} e(t)+K_{d} \dot{e}(t)
$$

- Where $e(t)=\theta^{\prime}(t)-\theta(t)$
- in the Laplace domain:

$$
U(s)=\left(K_{p}+s K_{d}\right) E(t)
$$

- This gives the following closed-loop system:

PD controller

- This system can be described by:

$$
\Theta(s)=\frac{U(s)-D(s)}{J s^{2}+B s}
$$

- Where, again, $U(s)$ is:

$$
U(s)=\left(K_{p}+s K_{d}\right)\left(\Theta^{d}(s)-\Theta(s)\right)
$$

- Combining these gives us:

$$
\Theta(s)=\frac{\left(K_{p}+s K_{d}\right)\left(\Theta^{d}(s)-\Theta(s)\right)-D(s)}{J s^{2}+B s}
$$

- Solving for Θ gives:

$$
\begin{aligned}
& \left(J s^{2}+B s\right) \Theta(s)+\left(K_{p}+s K_{d}\right) \Theta(s)=\left(K_{p}+s K_{d}\right) \Theta^{d}(s)-D(s) \\
& \Rightarrow\left(J s^{2}+\left(B+K_{d}\right) s+K_{p}\right) \Theta(s)=\left(K_{p}+s K_{d}\right) \Theta^{d}(s)-D(s) \\
& \Rightarrow \Theta(s)=\frac{\left(K_{p}+s K_{d}\right) \Theta^{d}(s)-D(s)}{J s^{2}+\left(B+K_{d}\right) s+K_{p}} \quad \text { ES159/259 }
\end{aligned}
$$

PD controller

－The denominator is the characteristic polynomial
－The roots of the characteristic polynomial determine the performance of the system

$$
s^{2}+\frac{\left(B+K_{d}\right)}{J} s+\frac{K_{p}}{J}=0
$$

－If we think of the closed－loop system as a damped second order system，this allows us to choose values of K_{p} and K_{d}

$$
s^{2}+2 \zeta \omega s+\omega^{2}=0
$$

－Thus K_{p} and K_{d} are：

$$
\begin{aligned}
& K_{p}=\omega^{2} J \\
& K_{d}=2 \varsigma \omega J-B
\end{aligned}
$$

－A natural choice is $\zeta=1$（critically damped）

PD controller

- Limitations of the PD controller:
- for illustration, let our desired trajectory be a step input and our disturbance be a constant as well:

$$
\Theta^{d}(s)=\frac{C}{s}, D(s)=\frac{D}{s}
$$

- Plugging this into our system description gives:

$$
\Theta(s)=\frac{\left(K_{p}+s K_{d}\right) C-D}{s\left(J s^{2}+\left(B+K_{d}\right) s+K_{p}\right)}
$$

- For these conditions, what is the steady-state value of the displacement?
$\theta_{s s}=\lim _{s \rightarrow 0} \frac{s\left(K_{p}+s K_{d}\right) C-s D}{s\left(J s^{2}+\left(B+K_{d}\right) s+K_{p}\right)}=\lim _{s \rightarrow 0} \frac{\left(K_{p}+s K_{d}\right) C-D}{J s^{2}+\left(B+K_{d}\right) s+K_{p}}=\frac{K_{p} C-D}{K_{p}}=C-\frac{D}{K_{p}}$
- Thus the steady state error is $-D / K_{p}$
- Therefore to drive the error to zero in the presence of large disturbances, we need large gains... so we turn to another controller

PID controller

- Control law:

$$
u(t)=K_{p} e(t)+K_{d} \dot{e}(t)+K_{i} \int e(t) d t
$$

- In the Laplace domain:

$$
\Theta(s)=\frac{\left(K_{d} s^{2}+K_{p} s+K_{i}\right) \Theta^{d}(s)-s D(s)}{J s^{3}+\left(B+K_{d}\right) s^{2}+K_{p} s+K_{i}}
$$

PID controller

－The integral term eliminates the steady state error that can arise from a large disturbance
－How to determine PID gains
1．Set $K_{i}=0$ and solve for K_{p} and K_{d}
2．Determine K_{i} to eliminate steady state error
－However，we need to be careful of the stability conditions

$$
K_{i}<\frac{\left(B+K_{d}\right) K_{p}}{J}
$$

PID controller

- Stability
- The closed-loop stability of these systems is determined by the roots of the characteristic polynomial
- If all roots (potentially complex) are in the 'left-half' plane, our system is stable
- for any bounded input and disturbance
- A description of how the roots of the characteristic equation change (as a function of controller gains) is very valuable
- Called the root locus

Summary

- Proportional
- A pure proportional controller will have a steady-state error
- Adding a integration term will remove the bias
- High gain (Kp) will produce a fast system
- High gain may cause oscillations and may make the system unstable
- High gain reduces the steady-state error
- Integral
- Removes steady-state error
- Increasing Ki accelerates the controller
- High Ki may give oscillations
- Increasing Ki will increase the settling time
- Derivative
- Larger K_{d} decreases oscillations
- Improves stability for low values of K_{d}
- May be highly sensitive to noise if one takes the derivative of a noisy error
- High noise leads to instability

