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Ch. 6 Single Variable Control
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Single variable control

« How do we determine the motor/actuator inputs so as to command the
end effector in a desired motion?

* In general, the input voltage/current does not create instantaneous
motion to a desired configuration
— Due to dynamics (inertia, etc)

— Nonlinear effects
e Backlash
e Friction

— Linear effects
 Compliance

 Thus, we need three basic pieces of information:

1. Desired joint trajectory
2. Description of the system (ODE = Ordinary Differential Equation)
3. Measurement of actual trajectory
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SISO overview

« Typical single input, single output (SISO) system:

Disturbance

Reference

Trajectory 4 Power + ¥+ Output
— =P Compensator A -

L vl ! Amplifier N\ Plant

Sensor

 We want the robot tracks the desired trajectory and rejects external
disturbances

 We already have the desired trajectory, and we assume that we can
measure the actual trajectories

e Thus the first thing we need is a system description
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SISO overview

* Need a convenient input-output description of a SISO system

« Two typical representations for the plant:
— Transfer function
— State-space

« Transfer functions represent the system dynamics in terms of the
Laplace transform of the ODEs that represent the system dynamics

 For example, if we have a 1DOF system described by:
(t)=J6(t)+Bot)
 We want the representation in the Laplace domain:
7(s)=s230(s)+sBd(s)
=s(sJ +B)d(s)
 Therefore, we give the transfer function as:
p(s) 6s) 1 1/J

7(s) s(sJ+B) s(s+B/J)
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Review of the Laplace transform

« Laplace transform creates algebraic equations from differential

equations
« The Laplace transform is defined as follows:

X(s)= Te‘Stx(t)dt

 For example, Laplace transform of a derivative:

L{k(t)) = L{dX_(t)} ~fes XUy

dt | 17 dt

— Integrating by parts:

L{dx—(t)} =e ' x(t) + sTe‘Stx(t)dt

dt 0
= sx(s)-x(0)
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Review of the Laplace transform

« Similarly, Laplace transform of a second derivative:

() = L{dzx(t)} e XU g _ s2x(s)-sx(0) - 2(0)

dt” : dt’
e Thus, if we have a generic 2" order system described by the following

ODE: mX (t)+ bx(t)+ kx(t) = F(t)

 And we want to get a transfer function representation of the system,
take the Laplace transform of both sides:

mL{X(t)}+ bL{x(t)} + KL{x(t)} = L{F (1)}
m(s°x(s)-sx(0)— x(0))+ b(sx(s)- x(0))+ kx(s) = F(s)
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Review of the Laplace transform

e Continuing:

(ms? +bs +k x(s) = F(s)+mx(0)+ (ms +¢)x(0)

* The transient response is the solution of the above ODE if the forcing
function F(t) =0
e Ignoring the transient response, we can rearrange:
x(s) 1

F(s) ms?+bs+k
e This is the input-output transfer function and the denominator is called
the characteristic equation
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Review of the Laplace transform

» Properties of the Laplace transform
— Takes an ODE to a algebraic equation

— Differentiation in the time domain is multiplication by s in the Laplace
domain

— Integration in the time domain is multiplication by 1/s in the Laplace domain

— Considers initial conditions
* |.e.transient and steady-state response

— The Laplace transform is a linear operator
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Review of the Laplace transform

for this class, we will rely on a table of Laplace transform pairs for
convenience

Time domain Laplace domain

(0 X(s) = Lix(t)} = [ex(t)
x(t) sx(s)-x(0)
(t) 2

s?x(s)-sx(0)-x(0)

Q
o)

2

wn
—+
D
©
Wik |ln

s? + w?

s? + w?
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Review of the Laplace transform

Time domain Laplace domain
x(t - a)H(t - ) e *x(s)

e x(t) x(s +a)

x(at) ix@

cs(t) C
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SISO overview

« Typical single input, single output (SISO) system:

Disturbance
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Sensor
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 We already have the desired trajectory, and we assume that we can
measure the actual trajectories

e Thus the first thing we need is a system description
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SISO overview

* Need a convenient input-output description of a SISO system

« Two typical representations for the plant:
— Transfer function
— State-space

« Transfer functions represent the system dynamics in terms of the
Laplace transform of the ODEs that represent the system dynamics

 For example, if we have a 1DOF system described by:
(t)=J6(t)+Bot)
 We want the representation in the Laplace domain:
7(s)=s230(s)+sBd(s)
=s(sJ +B)d(s)
 Therefore, we give the transfer function as:
p(s) 6s) 1 1/J

7(s) s(sJ+B) s(s+B/J)
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System descriptions

e A generic 2" order system can be described by the following ODE:
mx(t)+ bx(t)+ kx(t) = F(t)
 And we want to get a transfer function representation of the system,
take the Laplace transform of both sides:

mL{X(t)}+ bL{x(t)} + KL{x(t)} = L{F (1)}
m(s°x(s)-sx(0)— x(0))+ b(sx(s)- x(0))+ kx(s) = F(s)

(ms? +bs +k x(s) = F(s)+mx(0)+(ms +¢)x(0)
e Ignoring the transient response, we can rearrange:

x(s) 1
F(s) ms?+bs+k
e This is the input-output transfer function and the denominator is called
the characteristic equation
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Example: motor dynamics

« DC motors are ubiquitous in robotics applications

 Here, we develop a transfer function that describes the relationship
between the input voltage and the output angular displacement

« First, a physical description of the most common motor: permanent
magnet...

torque on the rotor:
Tm =K,
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Motor dynamics

 When a conductor moves in a magnetic field, a voltage is generated
— Called back EMF:
Vb = K2¢a)m
— Where a,, is the rotor angular velocity
armature inductance

armature resistance

/

L R
— i MW
ta n d)
v D v e
Tms 91:1:« Te
d.
L

a LRI, =V —V,
dt
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Motor dynamics

* Since this is a permanent magnet motor, the magnetic flux is constant,
we can write;

Tm = K1¢ia = Kmia

 Similarly: torque constant

dé,
V, =Ky 90, =K, dt

back EMF constant

K, and K, are numerically equivalent, thus there is one constant
needed to characterize a motor
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Motor dynamics

« This constant is determined from torque-speed curves
— Remember, torque and displacement are work conjugates
Torque

4

Vi<Vo<. ..

0 Speed w,, [rad/ ;ec]

— 1 is the blocked torque
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Single link/joint dynamics

* Now, lets take our motor and connect it to a link
« Between the motor and link there is a gear such that: §_=rg,
* Lump the actuator and gear inertias: J,, =J, +J,
 Now we can write the dynamics of this mechanical system:
4

2
A0 g 9 _, 0 _gj 0

‘] m 2 m
dt dt r r
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Motor dynamics

« Now we have the ODEs describing this system in both the electrical
and mechanical domains:

di

2 4RI =V —K, 39
dt

m

dt
2
m d ezm +Bm de :Kmia__
dt dt r

e Inthe Laplace domain:
(Ls+R)I(s)=V(s)-K,s0,(s)

(JmSZ + Bms)@m (s)=K_I (s)- 7, (s)

L

J
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Motor dynamics

 These two can be combined to define, for example, the input-output
relationship for the input voltage, load torque, and output displacement:

/T
I’F(S) N 1 Ia-('g) i —I—/\k_ 1 T Qm (3)
}{f\— g Ls+R = Rm 7 Jms+Bm ‘ ~ e
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Motor dynamics

« Remember, we want to express the system as a transfer function from
the input to the output angular displacement

— But we have two potential inputs: the load torque and the armature voltage
— First, assume 7; = 0 and solve for @,(s):

(Jm52+BmS)@m(S):| (S) N (LS+R)(Jmsz+BmS)
K, | K

i 0, (s)=V(s)-K,soO,(s)
. Onls) _ Ky
"~ V(s) s[Ls+R)J, s+B, )+K.K, ]
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Motor dynamics

 Now consider that V(s) = 0 and solve for @,(s):

_K,s0 K _K,560.(s) 7(s
Ia(S): LbSS-i— E(S) - (‘]m52+Bmsbm(s): LSb+R ( )_TLr( )

) —(Ls+R)/r

., Gals)_

r.(s) s|lLs+R)J,s+B, )+K.K, ]

* Note that this is a function of the gear ratio

— The larger the gear ratio, the less effect external torques have on the
angular displacement
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Motor dynamics

e In this system there are two ‘time constants’
— Electrical: L/R
— Mechanical: J/B,,

« For intuitively obvious reasons, the electrical time constant is assumed
to be small compared to the mechanical time constant

— Thus, ignoring electrical time constant will lead to a simpler version of the
previous equations:

0,(s) K, /R
V(s) s[J,s+B, +K.,K, /R]

0,(s) ~1r
r.(s) s[3,s+B,+KK, /R]
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Motor dynamics

* Rewriting these in the time domain gives:

?/mé)) A BK:iime T 3.6 (t)+ (B, +K,K. /R (t)=(K, /RV()
?T(S)) - B_mli erKm T 3.6 )+ B, +KK. /R, ({t)=—1/R)(t)

« By superposition of the solutions of these two linear 2"d order ODEs:

3.6 (t)+(B, +K,K, /R)A. (t)=(K, /RN(t)-(1L/R)(t)

LY_} ~ YT -~ ~ Y Y
J B u(t) d(t)
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Motor dynamics

 Therefore, we can write the dynamics of a DC motor attached to a load

as: J6(t)+B6(t)=u(t)-d(t)

— Note that u(t) is the input and d(t) is the disturbance (e.g. the dynamic
coupling from motion of other links)

« To represent this as a transfer function, take the Laplace transform:

D
(057 +Bs)(s)=U(s)-Dls) = v ok [ [1]en
L/ Js+B 5
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Setpoint controllers

« We will first discuss three initial controllers: P, PD and PID

— Both attempt to drive the error (between a desired trajectory and the actual
trajectory) to zero

« The system can have any dynamics, but we will concentrate on the
previously derived system
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Proportional Controller

o Control law:
u(t)=Ke(t)
— Where e(t) = &(t) - At)
e inthe Laplace domain:
U(s)=K,E(t)
e This gives the following closed-lo%p system:

0% + +,L 1 C,
b K p ~ Js* + Bs

ES159/259



wim HARVARD ENGINEERING

8 AnND APPLIED SCIENCES

PD controller

o Control law:
u(t)=K,e(t)+Kqe(t)
— Where e(t) = &(t) - At)
e inthe Laplace domain:
U(s)=(K, +sK, E(t)

« This gives the following closed-loop system:
D

y |
Oty Kp+Kps -2 ! o

()
N ~ Js“ + Bs
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PD controller

* This system can be described by:

Js® +Bs
 Where, again, U(s) is:

U(s)=(K, +sK, @' (s)-a(s))
e Combining these gives us:

(K, +sK, J@'(s)-6(s))-D(s)
Js? +Bs

O(s)=
e Solving for @ gives:
(9s? +Bs)o(s)+ (K, +sK, Jo(s) = (K, +sK, Jo°(s)-D(s)
= (9s% +(B+K, )s +K, Jo(s) = (K, +sK, Jo°(s)-D(s)
(K, +sK, Jo*(s)-D(s)

Js? + (B +K, )s +K,  ES159/259
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PD controller

 The denominator is the characteristic polynomial

* The roots of the characteristic polynomial determine the performance of

the system
K
s° +—(B+Kd)s+—p:0
J J
« If we think of the closed-loop system as a damped second order

system, this allows us to choose values of K; and K
s°+2lws+w° =0
« Thus K; and K are:

Kp = 0]
Ky =2¢00] — B

A natural choice is ¢= 1 (critically damped)
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PD controller

Limitations of the PD controller:

— for illustration, let our desired trajectory be a step input and our disturbance
be a constant as well:

6%(s)=2,D(s)=2

S S

— Plugging this into our system description gives:

(K, +sK,)c-D

@(S): 2
sls? +(B+Ky)s+K,)

— For these conditions, what is the steady-state value of the displacement?
0 i s(K, +sK, Jc —sD im K, +sK,c-D  K,C-D oD
®so0s(Us? +(B+Ky s +K,) s0Is?+(B+Kys+K, K, K,

— Thus the steady state error is —-D/K

— Therefore to drive the error to zero in the presence of large disturbances,
we need large gains... so we turn to another controller
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PID controller

« Control law:

u(t) = K,e(t)+ K e(t)+K, [eft)dt
e Inthe Laplace domain:
U(S) = (Kp + K4S+ ﬁjE(s)

S d

ge + i i % +J\+ 1 H
] I\P‘}‘I\DS‘}‘ SI N JSg-l—BS =

o(s) - (de2 +K,s + Ki)@d (s)-sD(s)
- ISP+ (B+K )T +K s +K,

’l’\./
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PID controller

« The integral term eliminates the steady state error that can arise from a
large disturbance

« How to determine PID gains
1. SetK; =0 and solve for K, and Kj

2. Determine K; to eliminate steady state error
* However, we need to be careful of the stability conditions

" <(|3+Kd)|<p
| J
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PID controller

o Stability
— The closed-loop stability of these systems is determined by the roots of the
characteristic polynomial
— If all roots (potentially complex) are in the ‘left-half’ plane, our system is
stable
» for any bounded input and disturbance

— A description of how the roots of the characteristic equation change (as a
function of controller gains) is very valuable
» Called the root locus
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Summary

* Proportional
— A pure proportional controller will have a steady-state error
— Adding a integration term will remove the bias
— High gain (Kp) will produce a fast system
— High gain may cause oscillations and may make the system unstable
— High gain reduces the steady-state error
e Integral
— Removes steady-state error
— Increasing Ki accelerates the controller
— High Ki may give oscillations
— Increasing Ki will increase the settling time
e Derivative
— Larger Kadecreases oscillations
— Improves stability for low values of Kad
— May be highly sensitive to noise if one takes the derivative of a noisy error
— High noise leads to instability
ES159/259
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