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Today: Evolutionary robotics

* Why evolutionary robotics
* Basics of evolutionary optimization
— INF3490 will discuss algorithms in detall

* lllustrating examples

— ROBIN in-house robotic platforms and
experiments

* Research challenges
— Reality gap
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Machine intelligence in robotics

* Sensing, vision
— Gather information about the world and represent
It internally for further processing

* Control and planning
— Low-level control
— Path planning (arms and mobile robots)*
— Task planning
* Design
— Robot body shape / structure
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Example: Henriette

http://www.youtube.com/watch?v=mXpz5khMY?2c



http://www.youtube.com/watch?v=mXpz5khMY2c
http://www.youtube.com/watch?v=mXpz5khMY2c
http://www.youtube.com/watch?v=mXpz5khMY2c
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Current robots
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Future scenarios
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Future robots
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Why evolutionary robotics?

* Adaptation to changes in environment or robot
— Robot may break or deteriorate
— Environment may change unexpectedly

* Optimizing for efficiency
— Energy, speed weight, actuators

* Unconventional, complex designs

— New materials and actuators make it more challenging
with conventional design approaches

Adaptation, optimization, exploration
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Henriette: Parameterized control

Leg position Leg position Leg position
blts Pause length bits bits Pause length bits bits Pause length bits
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* Walking pattern coded into bit strings.

* 3 “states” consisting of leg configuration and pause
length

* An evolutionary algorithm was used to evolve the leg
configurations and the pause length.

* For each leg configuration, 4 bits denote the position
of 4 actuators, 6 bits denote the length of the pause.

* Total bit string / genome length: 30 bits

Pneumatic
cylinder
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Evolutionary Algorithm (EA)

Initialize
random
population

Evaluate
individuals

Create new
population from
good

Termination Verify and
criterion apply

A ? :
individuals reached: solution(s)
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Evolutionary mechanisms

* Selection

— Good / fit individuals have a higher chance of
reproducing

* Inheritance
— Properties from parents are transferred to offspring

* Variation

— Changes in the genome adjust the behavior of the
offspring, sometimes to the better

11
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Selection

* Each individual in a population is evaluated
and assigned a fitness value, ie. a measure
of how a solution performs a given task
— Example: The forward speed of a robot

— Henriette: measured by the angular difference
from the rotation encoder over 3 repetitions of the

sequence
* The probability of an individual being
selected for reproduction is proportional to its
fitness value (randomness Is present)

12
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Inheritance + variation

parent 1 parent 2

[00000000] [11111111]

\ /mcombination

[00000[111]

i mutation

[01000111]

child
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Without bio-terminology, what is an EA?

* A population-based stochastic search algorithm

— Searching for satisfactory solutions in a solution space of all
possible solutions

— Searches in «parallel» on a population of solutions
— Black-box: does not assume knowledge about the problem
(but the results depend on the mapping and fitness function)
* Can handle large search spaces with complex
fithness landscape
— Less chance of being stuck in local optima

* (Can give unexpected results

K4
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Simulation

* Evolution on a real robot is impractical
— Time consuming
— Requires supervision: can get stuck, fall over
— Mechanical wear

* Simulation should help

— Allows automated evaluation

— Can be much faster
* especially with parallel computation

15
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Example: Quadratot

16
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Quadratot: Hardware and model
(DEMO)

3D printed parts NVIDIA PhysX
AX12/18 servos Revolute motor joints
Silicone rubber socks Rigid bodies (boxes) ~
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Quadratot:
Parameterized control

(mapping)
For each joint: \

— Curve shape

parameters (4)
— Phase
— Amplitude
e GRSl

control value

— Center angle

t 4

time
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Genome length 314 bits
Quad I‘atOt: Population size 200
Gen9tic algorithm (GA) Number of generations 300
Mutation rate 1/314
___ Crossover rate 0.2
Initialize Evaluate
random individuals
opulation simulator
PoP ( ) 200 x 300 =

60 000 tests per
evolutionary run!

Create new
population from
good

Termination
criterion
reached?

Verify

yes

> solution(s)
on robot

individuals
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Motion capture
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Quadratot:
Evolved gait

simulator
real 1 —-
real 2 ---
real 3 -
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Benefits of simulation
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: n 5 2 . . - Standard Peviation
generations 0 50 Cn“}gqin“r 150 200

Simulated|Real Vel.|Real Vel.

Evaluations| Velocity| (CCML)|(ROBIN)

Parameterized gaits + optimization [25] 153 - 5.8 -
HyperNEAT in hardware [25] 180 - 9.7 -
RL PoWER Spline [18§] 300 - 11.1 -
GA + simulator [9] 60000 *16.7 13.8 17.8
HyperNEAT + simulator [this paper] 40000 *%*25.4 14.5 -
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Challenge: Reality gap

* A simulator cannot capture all aspects of
reality

* Evolved solutions may exploit features of the
simulator not present in reality

4 T he solutions evolved in simulation behave
differently when applied to the real robot!

23



Quadratot:
Reality gap

simulator
real 1
real 2 ---
real 3 o

£
o
S
c
9
=
@
o]
o
N

0
X position (cm)




UiO ¢ University of Oslo

How to deal with the reality gap?

°* |deas?
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How to deal with the reality gap

1. Increase simulation fidelity

— Manually: do more precise measurements, increase solver
accuracy

— Automatically: measure deviation simulation-reality, auto-
tune simulator for smaller deviation
2. Do not allow for solutions using badly simulated
behaviour
— Manually: E.g. Encourage slow, static movements, add noise
— Automatically: Avoid solution types that transfer poorly

3. Online learning after deployment on real robot

— Can use more evolution, reinforcement learning, or other
method

26
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1. Automatic simulator tuning

* Sample from real world

— Test selected solutions
on real robot

* Tune (evolve) simulator
to fit all samples

Evolve new solutions
using tuned simulator
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Self Model synthesus

Self-modeling
robot
(Cornell U.)

* Creates self-model
through exploratory
actions

* Uses evolution to
search for walking
pattern using self-
model

* Ifthe robot is _
broken, a new self- | g
model is -
constructed

http://youtu.be/3HFAB7frZWM g

Exploratory Action synthesis

Targe1 Behavior synthesis \



http://youtu.be/3HFAB7frZWM
http://youtu.be/3HFAB7frZWM
http://youtu.be/3HFAB7frZWM

Fitness

Fitness
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http://youtu.be/gDPbXvADyio
http://youtu.be/MSwdmCQ0dZ74

2. Transferability (UPMC, Paris)

interpolated transferability function
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http://youtu.be/qDPbXvADyio
http://youtu.be/qDPbXvADyio
http://youtu.be/MSwdmC0dZ74
http://youtu.be/MSwdmC0dZ74
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3. Adaptation after transferral

* Reality gap is
«accepted»
* Adaptation

algorithm is carried .|
out on the real robot -+

* Needs to take into - + T
account fewer tests .. T E g
and more noise 8 — =

R2 raw R2 SA1 R2 OPL8
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Evolving shape and control

* Physics simulation allows
evolution of shape and
control simultaneously

— More efficient designs for
complex problems?

"y

his

— New designs for new
environments?

— Allows for offloading

computation to the body?

Sims: http://youtu.be/JBgG_VSP7f8
GOLEM: http://youtu.be/sLtXXFw_g8c
Soft robot: http://youtu.be/z9ptOeByLA4

31



http://youtu.be/JBgG_VSP7f8
http://youtu.be/JBgG_VSP7f8
http://youtu.be/sLtXXFw_q8c
http://youtu.be/sLtXXFw_q8c
http://youtu.be/sLtXXFw_q8c
http://youtu.be/z9ptOeByLA4
http://youtu.be/z9ptOeByLA4
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Example: «hox» body evolution

* Generative approach
— A program builds the robot

plan rather than all
parameters directly coded

— Allows a variety of bodies
from a compact code

* Designed for production

with 3D printer and
commercial servos
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«hox»: Some results (video)

33
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Results: different bodies

Discarded* 10 27 3 40 5% (6)
| | |

Movement
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Summary

Evolutionary robotics can be useful for
adaptation, optimization, design exploration

Simulation is useful for evolutionary search

The reality gap remains a research challenge
— Simulator tuning, transferability, online adaptation

Co-evolution of body and control gives new
possibilities

36
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Master’s thesis in robotics and
intelligent systems (ROBIN group)

* Many possible topics
— FPGA
— Rapid prototyping
— Machine learning
— Intelligent, evolutionary and adaptive robots
— Medical robotics and robotics in health care
— Music technology

* Possible collaboration with external partners

* Perfect background for current and future
industry 44 .

http://www.uio.no/studier/program/inf-nor-master/studieretninger/robotikk/opptak/



http://www.uio.no/studier/program/inf-nor-master/studieretninger/robotikk/opptak/
http://www.uio.no/studier/program/inf-nor-master/studieretninger/robotikk/opptak/
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Master’s projects in evolutionary
robotics at the ROBIN group

* Integration of locomotion
learning platform

(evolutionary algorithm + simulator +
hardware interface + sensing)

* Evolution of locomotion /
patterns for robots |

(walking, crawling, obstacles, adaptivity, / “ 3 & | §
robustness, neural networks, ...) & \m»u %

* Reality gap research

(testing various algorithms for a smooth
transfer from simulator to reality)

* Design and build new robot )\ ;
(CAD, 3D print, electronics, simulator)  — s

http://www.mn.uio.no/ifi/studier/masteroppgaver/robin/ 38



http://www.mn.uio.no/ifi/studier/masteroppgaver/robin/
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Example MSc project: Karkinos

* Hybrid automatic / engineered

| design of robot shape and control
= Dominated solutions
0 | ‘ | o Pareto set

Weight

215

39
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Example MSc project: Reality gap

Forward speed (m/s) Forward speed (m/s)
0.00 0.05 010 015 0.20 0.25 0.30 0.35 0.00 0.05 0.10 015 0.20 0.25 0.30 0.35
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Evolved gait
e

@simulated mreal msimulated mreal
(a) baseline, flat (b) baseline, obstacles

Forward speed (m/s) Forward speed (m/s)
0.00 0.05 010 0.15 0.20 0.25 0.30 0.35 0.00 0.05 0.10 015 0.20 0.25 0.30 0.35
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gait

Osimulated Wreal Dsimulated M real
{c) restricted, flat (d) restricted. obstacks
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Example gait

41
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Relevant courses

* INF3490 Biologically inspired computing
* INF4500 Rapid prototyping of robotic systems

42


http://heim.ifi.uio.no/matsh/inf4500/index.php
http://heim.ifi.uio.no/matsh/inf4500/index.php
http://heim.ifi.uio.no/matsh/inf4500/index.php
http://heim.ifi.uio.no/matsh/inf4500/index.php
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