

UiO : University of Oslo

INF3480 Evolutionary robotics Jørgen Nordmoen

Slides: Kyrre Glette

Today: Evolutionary robotics

- Why evolutionary robotics
- Basics of evolutionary optimization
 - INF3490 will discuss algorithms in detail
- Illustrating examples
 - ROBIN in-house robotic platforms and experiments
- Research challenges
 - Reality gap

Machine intelligence in robotics

- Sensing, vision
 - Gather information about the world and represent it internally for further processing
- Control and planning
 - Low-level control
 - Path planning (arms and mobile robots)*
 - Task planning
- Design
 - Robot body shape / structure

Example: Henriette

http://www.youtube.com/watch?v=mXpz5khMY2c

Current robots

UiO **: University of Oslo**

Future scenarios

Future robots

Why evolutionary robotics?

- Adaptation to changes in environment or robot
 - Robot may break or deteriorate
 - Environment may change unexpectedly
- Optimizing for efficiency
 - Energy, speed weight, actuators
- Unconventional, complex designs
 - New materials and actuators make it more challenging with conventional design approaches

Adaptation, optimization, exploration

- Walking pattern coded into bit strings.
- 3 "states" consisting of leg configuration and pause length
- An evolutionary algorithm was used to evolve the leg configurations and the pause length.
- For each leg configuration, 4 bits denote the position of 4 actuators, 6 bits denote the length of the pause.
- Total bit string / genome length: 30 bits

Evolutionary Algorithm (EA)

Evolutionary mechanisms

- Selection
 - Good / fit individuals have a higher chance of reproducing
- Inheritance
 - Properties from parents are transferred to offspring
- Variation
 - Changes in the genome adjust the behavior of the offspring, sometimes to the better

Selection

- Each *individual* in a population is evaluated and assigned a *fitness* value, ie. a measure of how a solution performs a given task
 - Example: The forward speed of a robot
 - Henriette: measured by the angular difference from the rotation encoder over 3 repetitions of the sequence
- The probability of an individual being selected for reproduction is proportional to its fitness value (randomness is present)

Inheritance + variation

Without bio-terminology, what is an EA?

- A population-based stochastic search algorithm
 - Searching for satisfactory solutions in a solution space of all possible solutions
 - Searches in «parallel» on a population of solutions
 - Black-box: does not assume knowledge about the problem (but the results depend on the mapping and fitness function)
- Can handle large search spaces with complex fitness landscape
 - Less chance of being stuck in local optima
- Can give unexpected results

Simulation

- Evolution on a real robot is impractical
 - Time consuming
 - Requires supervision: can get stuck, fall over
 - Mechanical wear
- Simulation should help
 - Allows automated evaluation
 - Can be much faster
 - especially with parallel computation

Example: Quadratot

Quadratot: Hardware and model (DEMO)

3D printed parts AX12/18 servos Silicone rubber socks NVIDIA PhysX Revolute motor joints Rigid bodies (boxes) UiO : Universitv

Quadratot: Parameterized control (mapping)

For each joint:

- Curve shape parameters (4)
- Phase
- Amplitude
- Center angle

UiO **Conversity of Oslo**

Benefits of simulation

		Simulated	Real Vel.	Real Vel.
	Evaluations	Velocity	(CCML)	(ROBIN)
Parameterized gaits $+$ optimization [25]	153	-	5.8	—
HyperNEAT in hardware [25]	180	_	9.7	_
RL PoWER Spline [18]	300	_	11.1	_
GA + simulator [9]	60000	*16.7	13.8	17.8
HyperNEAT + simulator [this paper]	40000	**25.4	14.5	_

Challenge: Reality gap

- A simulator cannot capture all aspects of reality
- Evolved solutions may exploit features of the simulator not present in reality

The solutions evolved in simulation behave differently when applied to the real robot!

How to deal with the reality gap?

Ideas?

How to deal with the reality gap

- 1. Increase simulation fidelity
 - Manually: do more precise measurements, increase solver accuracy
 - Automatically: measure deviation simulation-reality, autotune simulator for smaller deviation
- 2. Do not allow for solutions using badly simulated behaviour
 - Manually: E.g. Encourage slow, static movements, add noise
 - Automatically: Avoid solution types that transfer poorly
- 3. Online learning after deployment on real robot
 - Can use more evolution, reinforcement learning, or other method

1. Automatic simulator tuning

- Sample from real world
 - Test selected solutions on real robot
- Tune (evolve) simulator to fit all samples
- Evolve new solutions using tuned simulator

Self-modeling robot (Cornell U.)

- Creates self-model through exploratory actions
- Uses evolution to search for walking pattern using selfmodel
- If the robot is broken, a new selfmodel is constructed

http://youtu.be/qDPbXvADyio http://youtu.be/MSwdmC0dZ74

х

2. Transferability (UPMC, Paris)

3. Adaptation after transferral

- Reality gap is «accepted»
- Adaptation algorithm is carried out on the real robot
- Needs to take into account fewer tests and more noise

HONDA

Evolving shape and control

- Physics simulation allows evolution of shape and control simultaneously
 - More efficient designs for complex problems?

- New designs for new environments?
- Allows for offloading computation to the body?
- Sims: <u>http://youtu.be/JBgG_VSP7f8</u>
- GOLEM: <u>http://youtu.be/sLtXXFw_q8c</u>
- Soft robot: http://youtu.be/z9ptOeByLA4

Example: «hox» body evolution

- Generative approach
 - A program builds the robot plan rather than all parameters directly coded
 - Allows a variety of bodies from a compact code
- Designed for production with 3D printer and commercial servos

«hox»: Some results (video)

Results: different bodies

Discarded • $1 \equiv 2 \triangleq 3 = 4 \circ 5 \blacklozenge (6) \triangleq$

UiO **: University of Oslo**

Summary

- Evolutionary robotics can be useful for adaptation, optimization, design exploration
- Simulation is useful for evolutionary search
- The reality gap remains a research challenge
 - Simulator tuning, transferability, online adaptation
- Co-evolution of body and control gives new possibilities

Master's thesis in robotics and intelligent systems (ROBIN group)

- Many possible topics
 - FPGA
 - Rapid prototyping
 - Machine learning
 - Intelligent, evolutionary and adaptive robots
 - Medical robotics and robotics in health care
 - Music technology
- Possible collaboration with external partners
- Perfect background for current and future industry

http://www.uio.no/studier/program/inf-nor-master/studieretninger/robotikk/opptak/

Master's projects in evolutionary robotics at the ROBIN group

- Integration of locomotion learning platform (evolutionary algorithm + simulator + hardware interface + sensing)
- Evolution of locomotion patterns for robots

(walking, crawling, obstacles, adaptivity, robustness, neural networks, ...)

- Reality gap research (testing various algorithms for a smooth transfer from simulator to reality)
- Design and build new robot (CAD, 3D print, electronics, simulator)

3

2.5

Speed

1.5

0.5

Example MSc project: Karkinos

• Hybrid automatic / engineered design of robot shape and control

UiO **Conversity of Oslo**

Example MSc project: Reality gap

Example gait

Relevant courses

- INF3490 Biologically inspired computing
- INF4500 Rapid prototyping of robotic systems

