
The Interventional Centre

Addition of angular velocities

• How do we determine the angular velocity of the tool frame due to the 
combination of multiple rotations of the joints?

• Angular velocities can be added once they are projected into the same 
coordinate frame. 

• This can be extended to calculate the angular velocity for an n-link 
manipulator:

– Suppose we have an n-link manipulator whose coordinate frames are related as 
follows:

– Now we want to find the rotation of the nth frame in the inertial frame:

– We can define the angular velocity of the tool frame in the inertial frame:
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The Interventional Centre

The Jacobian

• Now we are ready to describe the relationship between the joint velocities 
and the end effector velocities.

• Assume that we have an n-link manipulator with joint variables q1, q2, …, qn

– Our homogeneous transformation matrix that defines the position and 
orientation of the end effector in the inertial frame is:

– We can call the angular velocity of the tool frame ω0,n
0 and:

– Call the linear velocity of the end effector:
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The Jacobian

• Therefore, we want to come up with the following mappings:

– Thus Jv and Jω are 3xn matrices

• we can combine these into the following:
– where:

• J is called the Jacobian
– 6xn where n is the number of joints
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The Interventional Centre

Deriving Jω

• Remember that each joint i rotates around the axis zi-1

• Thus we can represent the angular velocity of each frame with respect to 
the previous frame

– If the ith joint is revolute, this is:

– If the ith joint is prismatic, the angular velocity of frame i relative to frame i-1 is 
zero

– Thus, based upon our rules of forming the equivalent angular velocity of the tool 
frame with respect to the base frame:

– Where the term ρi determines if joint i is revolute (ρi =1) or prismatic (ρi =0)
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Deriving Jv

• Linear velocity of the end effector:

• Therefore we can simply write the ith column of Jv as:

• However, the linear velocity of the end effector can be due to the motion of 
revolute and/or prismatic joints

• Thus the end effector velocity is a linear combination of the velocity due to 
the motion of each joint

– w/o L.O.G. we can assume all joint velocities are zero other than the ith joint
– This allows us to examine the end effector velocity due to the motion of either a 

revolute or prismatic joint
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The Interventional Centre

Deriving Jv

• End effector velocity due to prismatic joints
– Assume all joints are fixed other than the prismatic joint di

– The motion of the end effector is pure translation along zi-1

– Therefore, we can write the ith column of the Jacobian:
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Deriving Jv

• End effector velocity due to revolute joints
– Assume all joints are fixed other than the revolute joint θi

– The motion of the end-effector is given by:

– Where the term r is the distance from the 
tool frame on to the frame oi-1

– Thus we can write the ith column of Jv:
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The complete Jacobian

• The ith column of Jv is given by:

• The ith column of Jω is given by:
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Singularities

• We can now derive the Jacobian as a mapping given by the following:

• This means that the columns of J form a basis for the space of possible end 
effector velocities

• Thus, for the end effector to be able to achieve any arbitrary body velocity 
ξ, J must have rank 6

• We know that J is 6xn and that:

• Thus, 
• For example, for the two link planar manipulator, 
• For example, for the Stanford manipulator, 
• Note that the columns the Jacobian of a kinematically redundant 

manipulator are never linearly independent
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Singularities

• But the rank of the Jacobian is not necessarily constant… it will of course 
depend upon the configuration

• Definition: we say that any configuration in which the rank of J is less than 
its maximum is a singular configuration

– i.e. any configuration that causes J to lose rank is a singular configuration

• Characteristics of singularities:
– At a singularity, motion in some directions will not be possible
– At and near singularities, bounded end effector velocities would require 

unbounded joint velocities
– At and near singularities, bounded joint torques may produce unbounded end 

effector forces and torques
– Singularities often occur along the workspace boundary (i.e. when the arm is 

fully extended)
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Singularities

• How do we determine singularities?
– Simple: construct the Jacobian and observe when it will lose rank

• EX: two link manipulator
– Previously, we found J to be:

– This loses rank if we can find some α such that:
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Singularities

• This is equivalent to the following:

• Thus if s12 = s1, we can always find an α that will reduce the rank of J
• Thus θ2 = 0,π are two singularities
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Determining Singular Configurations

• In general, all we need to do is observe how the rank of the 
Jacobian changes as the configuration changes

• But it is not always as easy as the last example to observe 
how the rank changes

• There are some shortcuts for common manipulators: 
decoupling singularities
– Analogous to kinematic decoupling
– Assume that we have a 6DOF manipulator and that we can break the 

Jacobian into a block form
– Then we can separate singularities into arm singularities and wrist 

singularities
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Decoupling of Singularities
• Assume that we have a 6DOF manipulator that has a 3-axis arm and a spherical 

wrist
– thus the Jacobian is 6x6 and the maximum rank J can have is 6
– Now we can say that the manipulator is in a singular configuration iff det(J(q)) = 0

• For the case of a kinematically decoupled manipulator, we can break up the 
Jacobian as follows:

– Where Jp and Jo are represent the position and orientation portions of the Jacobian
– Jo is given by the following:
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Decoupling of Singularities

• Now, one further assumption: o3 = o4 = o5 = o6 = o
– This allows us to note the form of Jo:

– And we can split the total manipulator Jacobian as follows:

– Thus we can say:
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Wrist singularities
• To determine the wrist singularities, we observe the determinant of J22

• Thus the J22 has rank 3 when the three axes are linearly independent
– This is always true, except when two of the axes are collinear
– i.e. θ5 = 0, π are the singularities for a spherical wrist

[ ]54322 zzzJ =
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Arm singularities
• To determine the arm singularities, we observe the determinant of J11

– First, if the ith joint is revolute, the ith column is J11 is given as follows:

– First, if the ith joint is prismatic, the ith column is J11 is given as follows:

• We will now give examples for the common configurations we have been 
using: elbow, spherical, and SCARA manipulators
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Ex: elbow manipulator
• To determine the arm singularities, we observe the determinant of J11

– First, J11 is given as follows:

– The determinant of J11 is:
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Ex: elbow manipulator
• The determinant of J11 is:

– Thus the arm is singular when s3 = 0, i.e. θ3 = 0, π
– This corresponds to the elbow being fully extended or fully retracted:

( ) ( )2332233211det cacasaaJ +=
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• The determinant of J11 is:

– Thus the arm is also singular when a2c2 + a3c23 = 0
– This corresponds to the wrist center intersecting the z0 axis:

– But this is not possible if there is a shoulder offset:

Ex: elbow manipulator

( ) ( )2332233211det cacasaaJ +=
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Ex: spherical manipulator
• Since there is no ‘elbow’, the only singularity is when the wrist 

center intersects the base axis 
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Ex: SCARA manipulator
• First, we observe the construction of the Jacobian:

• The determinant is:

• Thus, the SCARA is singular 
for s2 = 0, i.e. θ2 = 0, π
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Force/torque relationships
• Similar to the relationship between the joint velocities and the end 

effector velocities, we are interested in expressing the relationship 
between the joint torques and the forces and moments at the end 
effector

– Important for dynamics, force control, etc
• Let the vector of forces and moments at the end effector be 

represented as:
• Then we can express the joint torques, τ, as:

• We will derive this using the principal of virtual work when we 
discuss the dynamics of manipulators

[ ]Tzyxzyx nnnFFFF =

( )FqJT=τ
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Force/torque relationships
• Example: for a force F applied to the end of a planar two-link 

manipulator, what are the resulting joint torques?
– First, remember that the Jacobian is:
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Force/torque relationships
• Example: for a force F applied to the end of a planar two-link 

manipulator, what are the resulting joint torques?
– Thus the joint torques are:
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Inverse velocity
• We have developed the Jacobian as a mapping from joint velocities to end 

effector velocities:

• Now we want the inverse:  what are the joint velocities for a specified end 
effector velocity?

• Simple case: if the Jacobian is square and nonsingular,

• In all other cases, we need another method
• For systems that do not have exactly 6DOF, we cannot directly invert the 

Jacobian
• Thus there is only a solution to finding the joint velocities if ξ is in the range 

space of J

qJ =ξ

ξ1−= Jq
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Inverse velocity
• Take the case of a manipulator with more than 6 joints

– i.e. n > 6

• We can solve for the joint velocities using the right pseudo inverse
• For 
• If the manipulator is nonsingular, rank(J) = m and (JJT)-1 exists

– Thus we can write:

– Where J+ is the right pseudo inverse of J
– Thus the solution for the joint velocities (with minimum norm) is:
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Inverse velocity
• How do we construct J+? Using SVD:

– Generalization of methods that we would use for square matrices
– We can write any m x n matrix J as a composition of three matrices:

– Where the matrix U is m x m and contains the eigenvectors of JJT as its columns 
and Σ is a matrix that contains the singular values:

– And the singular values σi are the square roots of the eigenvalues of JJT:
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Inverse velocity
• Now J+ is given by:

– Where Σ+ is:

TUVJ ++ Σ=

T

m






















⋅
⋅=Σ

−

−

−

0
0
0
0
0

1

1
2

1
1

σ

σ
σ



The Interventional Centre

Next class…

• Introduction to dynamics
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