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Exercise 1 (20 %)

a) (5 %) What is the difference between closed and open loop systems? Draw a block diagram of
both. What is the benefit of a closed loop system? One reason is sufficient.

b) (5 %) When working with closed/open loop systems we often use the Laplace transform. Why is
the Laplace transform useful when analysing robot control systems? One reason is sufficient.

c¢) (5 %) What are the overall benefit of using ROS (Robot Operating System)? Mention at least three
technical capailities (seperate ROS modules) that can be used in an industrial robotics application.

d) (5 %) Describe what the concept ”reality gap” means within Evolutionary Robotics. Explain at
least one method that can be used to deal with this challenge.

Exercise 2 (45 %)
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Figure 1: Robot

Figure 1 shows the robot configuration that is being used. In the initial position, shown in Figure 1, the
rotational joint is rotating about the Z; axis, the first prismatic joint moves along the 7, axis and the
second prismatic joint moves perpendicular to the Zy axis (along Xj), the second rotational joint (joint
4) rotates about an axis parallel to Xy in this initial position. Ly, Lo, L3 and Ly are fixed lengths. The
first rotational joint is considered to be in the base of the robot with zero position as shown in the figure.

a) (10 %) Assign coordinate frames on the robot in Figure 1 using Denavit-Hartenberg convention.
Write the Denavit-Hartenberg parameters in a table.

b) (5 %) Derive the forward kinematics for the robot from the base coordinate system to the tool
coordinate system at the tip of the robot.

¢) (10 %) Derive the Jacobian for the robot.



d) (10 %) To simplify, assume that the angle of the first rotational joint is given. Derive the inverse
kinematics for the robot, using the fact that you already know the first rotational joint.

e) (5 %) How would you proceed to find the singularities of the robot? What is the difference between
workspace and joint space singularities? Mention different consequences with each of them.
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Figure 2: Robot in a welding station

f) (5 %) We will now use our robot in a real world application. The environment where the robot
shall work is shown in figure 2. A welding tool is attached to the end effector, and the robot shall
weld two pipes together starting in (0,0,0) in the target t coordinate frame. The target coordinate
frame is located at PV = (x4, 4, 2), where W is the world coordinate frame. The robots base
coordinate frame is located at PbW = (xp, Y», 2p). Write the formulas which will describe the joint
configuration that puts the TCP (Tool Center Point, at the tip of the tool/end effector) at (0,0,0)
in the target coordinate frame. Describe your approach thoroughly.



Exercise 3 (15 %)
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Figure 3: Simplified robot

Figure 3 shows a robot with two degrees of freedom. This is a simplification of the robot in exercise 2.
Assume that the only mass is a point mass of M at the tool of the robot. We will not be considering the
forces generated by the systems inertia.

a) (10 %) Find the Lagrangian £ of the robotic system in Figure 3.

b) (5 %) Derive the dynamic equations for the robot using the Euler-Lagrange formulation. Formulate
the Euler-Lagrange equations of the form M (q)§+ C(q,¢)¢+ G(q) =71



Exercise 4 (20 %)

We have the system J6(t) + BO(t) + K6(t) = 7. When we use the Laplace transform on this system we
get Js20(s) + BsO(s) + KO(s) = 7.

a)

b)

o'(s)

B S—— o

O(s)

v

P

Figure 4: Control system

(2.5 %) Figure 4 shows the system with controller in Laplace domain. What is the name of the
controller used here?

(10 %) Working further with the controller in figure 4, how can we remove the steady state error,
and still have a fast responsive system that reacts to the rate of change of the process value? What
is the name of this new controller? Find the closed loop transfer function between the input value
(©%(s) - desired angle) and output value (O(s) - actual/measured angle) for the system with this
new improved controller. Use the final value theorem to calculate the steady state error for the
closed loop control system with this new improved controller, when both the desired angle ©%(s)
and the disturbance D(s) are ”step inputs”. Comment on the result.

(2.5 %) In general, how would you examine the stability of a control system like the one in task a?
What is required to get a stable system?

(5 %) We analyze the step response of a closed loop control system;
s + 2¢ws + w? (1)

It is an under damped second order system (¢ < 1) that gives us fast response, but unfortunately
oscillations, see figure 5
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Figure 5: Under damped system

Here, the damping ratio ¢ < 1. Our process cannot tolerate oscillations, but we want the fastest
response possible. What is our desired system called, and what will ¢ be in that case?



22. mai 2017 11:03

Rules & Formulas INF3480/INF4380

23. januar 2017 16:46

A c

c? = a? + b? —2ab cosy

cos’ @ +sin’6 =1

sin(—u) = —sinu  cos(—u) = cosu

c0s 260 = cos® 6 — sin” @
=2cos’ 0 — 1
=1-2sin’ @

1 —tan®6

1+ tan? 6

sin(u + v) = sinucos v + cos usin v

cos(u + v) = cos ucos v — sinusinv

tan(u + v) = tanu + tanv
| " 1—tanutanv

sin(u — v) = sinu cosv — cosusinv
cos(u —v) = cosucosv + sinusinv

; ( ) tanu — tanv
antygy —10n) = ———
1+ tanutanv

Side 1 for INF3480 INF4380

° inp=Q
&6@} sin 0 h
@SQO opposite 0= %
b o
adjacent tan b =g

in 6

tanf = S
cosf
m

radians = degrees x

180

9 1 — cos(2u)

sin“wu =
2
1 + cos(2u
cos?u = 7( )
2
. 1 — cos(2u
tan®u = #
1 + cos(2u)
sin®@ a
=
= cosf@ E
&D —siné# S
£ —cos @ o
sin @

.0 {1 —cosf 7} {1+ cosf
smE_:I: — cosE—:t —

8in 260 = 2sinfcos d
_ 2tand

© 1+tan’d



SiNY fe--omeeeeeeeees

tan 260 =

F=iab)=icosv sinv)

-,

-1 d cosy

atan2(y,z) = ¢

a.rctan(%)
arctan(%) +

2tan@
1—tan?6

ifz >0,

ifz <0andy >0,
ifz <0andy <0,
ifz=0andy >0,
ifz=0andy <0,
ifz=0andy=0.

Deg
Rad
Sin
Cos
Tan 0 3 v3° V3t Not defined
A= [a’ b, C] B= [d‘ e’f] Consider the matrices
-1 0] |1 2
A= B:
X\ YZ P [ 23 [3 0]
a b @a b Multiplying gives
-1 =2 36
d e £ d. e - -
e 0[] w2
Thus. AB # BA.

A xB = [(bf— ce), (cd — af), (ae — hd)]

Side 2 for INF3480 INF4380



ae + bg af + bh

>
I

ce +dg| cf + dh
A B C

A, B and C are square metrices of size N x N
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e, T, g and h are submatrices of B, of size N/2 x N/2
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