
INF3480/INF4380 - Assignment 3(b)

Justinas Mǐseikis, Eirik Kvalheim and Jørgen Nordmoen

Due: 3. May 2018, 12:00 (24h)

Introduction

In this assignment we will look more closely at control of a robot. We will
continue to work with the CrustCrawler and by the end of this assignment you
will get to test your controller on the real robot. We will start with PID control
theory, before testing path generation.

For this assignment you will need to use the virtual machine (VM) with
‘ROS‘ installed. The VM has all required packages installed, but you may
need to download custom assignment packages. Read the text carefully to fully
understand what is required to run and implement. Good luck!

Figure 3: The inverted pendulum

4 Dynamics

In this exercise we will model joint 2 of the X2 robot as an inverted pendulum. The pendulum has
a mass m which is located on top of the pendulum (see Figure 3). The distance from the rotation
point to the mass is l. The moment of inertia I of the pendulum is ml2. The motor in the joint
provides a torque τm.

a) (optional) Derive the dynamics of the inverted pendulum using Newton-Euler formulation.
It will be useful to use the fact that torque is defined as the cross product between the force
and and length of the arm, i.e. τ = r × F . In our case this simplifies to τ = rF sin θ. The
rotation counterpart to Newton’s second law is

∑
τi = Iθ̈.

b) Derive the dynamics of the inverted pendulum using Euler-Lagrange Equations. Generally
the kinetic energy is K = 1

2mv
2 and the potential energy is P = mgh. Set zero potential

energy to the rotation point.

c) (optional) Are the two models equal? Why or why not?

4

Figure 1: Inverted pendulum model.

i

https://github.com/jmiseikis/INF3480_2018/blob/master/ROS_VM_Connection_Instructions.md


Task 2 (1
3)

In this task we will try to design a controller for the single joint of a sim-
plified CrustCrawler using a PID controller. We can imagine the simplified
CrustCrawler as an inverted pendulum as shown in figure 1.

The dynamic model is

2ml2θ̈ −mglsinθ = τm (1)

The motor and gears have some internal resistance. We will therefore use a
simplified model of the internal resistance given by

τm = τ − cθ̇ (2)

The output of the motor is τm. This is equal to the torque the motor is set
to output (τ) subtracted the internal damping (cθ̇). The torque is a function of
the current supplied to the motor. We model this as a linear function τ = nu
where n is the ratio between torque and current and u is the current. This gives
a model over the motors as

τm = nu− cθ̇ (3)

Before we get going lets go through a bit of setup to run the code and
simulation.

Setup

We assume that you have initialized your workspace in accordance with the
lectures. The first thing we will need is to download dependencies for the as-
signment code. If you remember, from the ROS lecture, we can discover the
dependencies of a package by reading the ‘package.xml‘. Most of our dependen-
cies are already installed, but we still need to download the custom CrustCrawler
packages.

1 cd /path/to/your/workspace/src/
2 git clone https://github.uio.no/INF3480/crustcrawler simulation.git
3 git clone https://github.uio.no/INF3480/crustcrawler pen.git

This will download the CrustCrawler simulation packages which contains a
description of the robot and how to simulated it within Gazebo. The second
package is a helper package for our reduced robot arm with a pen attachment.

The next step is to copy the ‘pid assignment‘ folder, which is part of this
assignment code, into our source directory. You should now be ready to simulate
the CrustCrawler!

Assignment

a) We will start by testing the simulation. Run ‘roslaunch pid assignment
setup.launch‘ (do not forget to build and source the workspace!). You
should now see Gazebo starting with the CrustCrawler inside. To run the
assignment code launch ‘roslaunch pid assignment pid.launch‘, this should
open an ”rqt” window where we can tune the PID controller. If you try

ii

https://github.com/jmiseikis/INF3480_2018/blob/master/ROS_INF3480_Part1_2018.md#create-catkin-workspace
https://github.com/jmiseikis/INF3480_2018/blob/master/ROS_INF3480_Part1_2018.md#create-catkin-workspace


to change values now nothing will happen because the controller is not
implemented.

We will now test a proportional controller (the ‘P’ in PID) to control the
position of the pendulum. We assume that we can set u to any value. To
implement the P-controller we set

u = Kpe (4)

where e = θd − θ and θd is the desired angle.

b) Implement the controller in Python. In the file ‘src/pid.py’ you will find the
skeleton implementation which is called by the simulation. The return
value from the function ‘ call (...)’ should be the same as the current
task sub-step. Implement the calculation in equation 4 in the function
‘step b‘ (do not forget to return u). Then simply close the ‘rqt‘ window
(if it is open) and run ‘roslaunch pid assignment pid.launch‘ again. To
change the desired angle of the arm change the ‘data‘ value in the ‘Message
Publisher‘ pane. Test different values of P by changing the value in the
‘Dynamic Reconfigure‘ pane. Remember to use the ‘self.p‘ and ‘self.error‘
values so that these are output correctly to the GUI! Test a few values for
Kp and report on which values seem to give a good result.

Next we will try the PD-controller. This controller is defined as

u = Kpe+Kdė (5)

where ė = θ̇d − θ̇ and θ̇d is the desired angle velocity, which we will assume
is zero. Making ė = −θ̇.

c) Implement the controller in the function ‘step c‘ and try different values of
Kd. Remember to change which function is returned in ‘ call (...)’. Does
this new controller improve over the one in b)? Describe the difference
and the values of Kd that you found.

It is now time for the full PID-controller. This is defined as

u = Kpe+Ki

∫
e(t)dt+Kdė (6)

d) Implement this new controller (function ‘step d‘) and try different values
for Ki. Do you observe any improvements in performance? Describe
the improvements (or lack thereof) and the values of Ki that resulted in
good/bad performance.

To compensate for the non-linearities on the model we will make a controller
that removes the non-linearities from our model. To do this we will partition
our controller into three parts, one containing the PID control law, α and β.
Where α and β account for the non-linearities. This control law can be written
as

u = αu′ + β (7)

iii



where u implements the PID control law. Combining (1), (3) and (7) we get

1

n

(
2ml2θ̈ + cθ̇ −mglsinθ

)
= αu′ + β (8)

To simplify the controller we assume that the internal damping in the motor
is zero. This is a linear term and we will be able to compensate for this by using
the PID-controller. The new model is thus

1

n

(
2ml2θ̈ −mglsinθ

)
= αu′ + β (9)

We want to make the system a unit mass system where θ̈ = u′. To obtain
this we use

α =
1

n
2ml2 (10)

β = − 1

n
mglsinθ (11)

This gives us a controller that looks like

u =
1

n
2ml2u′ − 1

n
mglsinθ (12)

Since we want to tune the constants of the controller we replace the constants
in equation 12 with generic ones

u = K1u
′ −Kcsinθ (13)

We want to use a PID-controller, so we insert the PID-controller in (6) for
u′ and set K1 = 1. This gives the non-linear controller

u = Kpe+Ki

∫
e(t)dt+Kdė−Kcsinθ (14)

where the parameters m and l have been incorporated into the control pa-
rameters Kp, Ki, Kd and Kc.

e) Implement this last controller in Python and try different values for Kc.
What improvements do you observe this time around? Which values of
Kc gives good performance?

Task 3 (2
3)

In this final task you will implement a trajectory generator for the CrustCrawler
in order to make the robot draw a circle. First this circle will be drawn in
the horizontal plane and then later on we will experiment with rotation of this
plane. Everything that is needed to solve this task has been explained in lectures
(Chapter 5 - Path and Trajectory Planning is not needed). We will first test
the code in software and then later you will get to test it on the real robot! The
task is to draw circles on a board and for this to work we need to calculate a
stream of positions along a trajectory that the robot can follow. The focus of
this task will be to create a ROS package and seeing how the same code can
work in both simulation and in the real-world.

Note that task a) accounts for 1
2 of Task 3 and b), c), d) account for 1

2

iv



Software

We will start this task by creating a ROS package.

a) Create a package that depends on rospy, actionlib, control msgs, crustcrawler pen gazebo
and trajectory msgs.

b) Implement the path planning node as described here.

c) Implement rotation of the drawn circle in the function ‘rotate path(...)’. The
arguments angle and axis describe the rotation.

d) Test different arguments for the circle. What do you observe when you add
more points to be drawn?

If you have gotten this far, congratulations! You are ready to test your code
on the real CrustCrawler!

Hardware

The final part of this assignment is to demonstrate your code on the real hard-
ware. We have set aside group sessions where you will get a chance to test your
code on the real CrustCrawler. You must first demonstrate that your code works
in the simulator before you will be able to run the code on the CrustCrawler.

v

https://github.com/jmiseikis/inf3480_2018/blob/master/ROS_INF3480_Part1_2018.md
https://github.com/jmiseikis/inf3480_2018/blob/master/trajectory_node.md


Requirements:
Each student must hand in their own assignment, and you are required to have read
the following declaration to student submissions at the department of informatics:
http://www.ifi.uio.no/studinf/skjemaer/declaration.pdf

IMPORTANT: Name the pdf file: “inf3480-oblig3-your username.pdf ”.
All deadline and devilry3 questions are to be directed to Nikolai (email
below).

Submit your assignment at https://devilry3.ifi.uio.no.
Your submission must include:

• A pdf-document with answers to the questions.

• A README.txt containing a short reflection on the assignment; what was
difficult, what was easy, was there anything you could have done better?

If you have used MATLAB, Sympy or other tools for computing an answer, your
solution and approach must be illustrated and explained thoroughly in the pdf file.
The files containing the code must also be named and delivered.

Deadline: 3. May 2018, 12:00 (24h)

You can use the slack channel assignment 3 for general questions about the
assignment. Do not hesitate to contact us if you have any further questions.

Eirik Kvalheim - eirikval@mail.uio.no
Daniel Sander Isaksen - daniesis@mail.uio.no
Sadegh Hosseinpoor - sadeghh@mail.uio.no
Fredrik Ebbesen - fredreb@mail.uio.no
Nikolai René Berg nikolber@mail.uio.no

vi

http://www.ifi.uio.no/studinf/skjemaer/declaration.pdf
https://devilry3.ifi.uio.no/
mailto:eirikval@mail.uio.no
mailto:daniesis@mail.uio.no
mailto:sadeghh@mail.uio.no
mailto:fredreb@mail.uio.no
mailto:nikolber@mail.uio.no

