

Lecture 11 - Control Theory

Kim Mathiassen

Control of Manipulators and Mobile Robots UNIK4490/TEK4030

Lecture overview

- · General introduction to control theory
 - Motivation
 - Self regulating systems (pendulum at equilibrium)
 - Unstable systems (car speed)
 - Open and closed loop systems
 - Open loop (washing machine)
 - Feed forward (car speed incline as disturbance model)
 - Closed loop
 - Feedback (cruise control)
 - Stability
 - <u>Stable systems</u>
 - Unstable systems

*

Definition input/output stability

- Asymptotically stable if:
 - $y \rightarrow 0$ when $t \rightarrow \infty$ and u has a finite duration and amplitude
- Marginally stable if:
 - $|y| < \infty$ for all $t \ge 0$ and u has a finite duration and amplitude
- Unstable otherwise

Robot Control

- We want to control the joint positions (configuration) of a robot
 - Therefore we need to figure out how we can determine the motor/actuator inputs so as to command the robot to a desired configuration
- In general, the input (voltage/current) does not create instantaneous motion to a desired configuration because of the robots dynamical properties
- There are also other real world elements that affect the robots motion like backlash (clearance between gear tooths
 - causes hysteresis) and the properties of the motor/actuator

Robot Control

- We shall focus on single input single output systems (SISO) meaning that we only look at each joint by itself
- We therefore assume that each joint is affected only by itself
- This means that the contributions from the other joints are treated as a disturbance
- Before we can start to control a joint, we need to model the joint and look at its properties.

Robot control - Modelling

- From dynamics we have the ordinary differential equation (ODE) for the robot. We have *n* non-linear equations as a result of *n* joint variables, all expressed in the time domain.
- These *n* equations often depends on each other
- We want to transform these equations into *n* linear, independent equations
- We do this by treating the non-linear effects and the dependence of other joints as disturbance

University of Oslo

Example – Robot modeling L_2 θ_1 L_1 L_1

The dynamic equations are given as

$$mL_{2}^{2}\ddot{\theta}_{1} + 2mL_{2}\dot{L}_{2}\dot{\theta}_{1} - mgs_{1}L_{2} = \tau_{1}$$
$$m\ddot{L}_{2} - mL_{2}\dot{\theta}_{1}^{2} - mgc_{1} = F_{2}$$

We shall now give a linearization of the first equation

Robot control - Modeling

- We now have a set of independent linear equations
- We want to analyse the properties of these systems
- Laplace transform can be used to transform the equations into the frequency domain
 - This transforms the equations from a ordinary differential equations into a linear equations, which easier to solve
 - We can analyse important system properties in the frequency domain, such as stability and step response
- Block diagrams can be used to visualize the equations for the system and possible feedback loops

Laplace transform

• The Laplace transform is defined as follows:

$$\mathbf{x}(\mathbf{s}) = \int_{0}^{\infty} \mathbf{e}^{-\mathbf{s}t} \mathbf{x}(t) dt$$

• For example, Laplace transform of a derivative:

$$L\{\dot{\mathbf{x}}(t)\} = L\left\{\frac{d\mathbf{x}(t)}{dt}\right\} = \int_{0}^{\infty} \mathbf{e}^{-st} \frac{d\mathbf{x}(t)}{dt} dt$$

- Integrating by parts:

$$L\left\{\frac{d\mathbf{x}(t)}{dt}\right\} = \mathbf{e}^{-st} \mathbf{x}(t)\big|_{0}^{\infty} + s\int_{0}^{\infty} \mathbf{e}^{-st} \mathbf{x}(t)dt$$
$$= s\mathbf{x}(s) - \mathbf{x}(0)$$

Laplace transform

• Similarly, Laplace transform of a second derivative:

$$L\{\ddot{x}(t)\} = L\left\{\frac{d^2x(t)}{dt^2}\right\} = \int_0^\infty e^{-st} \frac{d^2x(t)}{dt^2} dt = s^2x(s) - sx(0) - \dot{x}(0)$$

• Thus, if we have a generic 2nd order system described by the following ODE:

$$m\ddot{x}(t) + b\dot{x}(t) + kx(t) = F(t)$$

• And we want to get a transfer function representation of the system, take the Laplace transform of both sides:

$$mL\{\dot{x}(t)\} + bL\{\dot{x}(t)\} + kL\{x(t)\} = L\{F(t)\}$$

$$m(s^{2}x(s) - sx(0) - \dot{x}(0)) + b(sx(s) - x(0)) + kx(s) = F(s)$$

Laplace transform

• Continuing:

$$(ms^{2} + bs + k)x(s) = F(s) + m\dot{x}(0) + (ms + c)x(0)$$

- The *transient response* is the solution of the above ODE if the *forcing function* F(t) = 0
- The steady state response is the solution of the above equation if the initial conditions are zero
- This yields the equation

$$(ms^2 + bs + k)x(s) = F(s)$$

UiO **Contemport of Technology Systems**

University of Oslo

Common Laplace functions

University of Oslo

University of Oslo

Review of the Laplace transform

- Properties of the Laplace transform
 - Takes an ODE to a algebraic equation
 - Differentiation in the time domain is multiplication by s in the Laplace domain
 - Integration in the time domain is multiplication by 1/s in the Laplace domain
 - Considers initial conditions
 - i.e. transient and steady-state response
 - The Laplace transform is a linear operator

Transfer functions

 When all initial conditions of a Laplace transform are zero, the response Y(s) of a linear system is given by its input X(s) and its transfer function H(s)

$$Y(s) = H(s) X(s)$$
$$\frac{Y(s)}{X(s)} = H(s)$$

• The denominator (X(s)) of the transfer function is called the characteristic polynomial

University of Oslo

Example cont. – Robot modeling

We can now derive the transfer functions for the robot in the frequency domain

Example – Mass spring damper system

Block diagrams

- A block diagram visalizes one or more equations
- Makes it easier to see feedback and feed forward loops

University of Oslo

Block diagram symbols

University of Oslo

Example cont. – Robot modeling

Drawing a block diagram

The transfer function as given as:

 $Js^2\theta_1 - G\theta_1 + D = \tau_1$

Drawing a block diagram of a mass spring damper system

Manipulation of block diagrams

Manipulation of block diagrams

University of Oslo

Manipulation of block diagrams

Manipulation of block diagrams

Prove on blackboard

Zeros and poles of the transfer functions

- For rational transferfunctions we denote the roots of the nominator zeros and roots of the denominator poles
- The poles gives important characteristics about the transfer function

$$h(s) = \frac{\rho_p s^p + \dots + \rho_1 s^1 + \rho_0}{s^n + \alpha_{n-1} s^{n-1} + \dots + \alpha_1 s + \alpha_0}$$
$$h(s) = \frac{\rho_p (s - \nu_1) \dots (s - \nu_p)}{(s - \lambda_1) \dots (s - \lambda_n)}$$

• We call the polynomial in the denominator the characteristic polynomial

Examples – Finding roots and zeros

- Example 1: Given transfer function
- Example 2: Mass-spring-damper system

Example cases

- Three cases depending on the poles
- · Case I: Poles are real and distinct
 - Over-damped system
- · Case II: Poles are real and equal
 - Critically damped system
- Case III: Poles are complex conjugates
 - Under-damped system

University of Oslo

Time responses

University of Oslo

Common transfer functions and their poles and step respones

iO C	Transfer- funksjon $h(s)$	Nullpunkter og poler	Sprangrepons
	$K \frac{1 + T_2 s}{1 + T_1 s}$ $T_2 > T_1$	$\begin{array}{c c} \hline \mathbf{x} & \mathbf{e} \\ \hline -\frac{1}{T_1} & -\frac{1}{T_2} \\ \hline \end{array}$	$\begin{array}{c c} KT_2/T_1 \\ K \\ \hline T_1 \\ t \end{array}$
($K \frac{1 + T_2 s}{1 + T_1 s} \\ T_2 < T_1$	$\begin{array}{c c} - \mathbf{x} \\ -\frac{1}{T_2} & -\frac{1}{T_1} \end{array}$	KT_2/T_1
,	$\frac{K}{1 + \left(\frac{s}{\omega_0}\right)^2}$		
	$\frac{K}{1+2\zeta\frac{s}{\omega_0}+\left(\frac{s}{\omega_0}\right)^2}$	×	
	$\frac{Ks}{1+2\zeta\frac{s}{\omega_0}+\left(\frac{s}{\omega_0}\right)^2}$	×	
	$\frac{K(1+Ts)}{1+2\zeta\frac{s}{\omega_0}+\left(\frac{s}{\omega_0}\right)^2}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	

Root locus plots

- Instead of using constant values in the transfer function we now assume that we can *vary* one (or more) parameters
- Changing this parameter will move the poles and zeros in the complex plane
- The paths of zeros and poles in the complex plane as a function of changed controller parameters are called root locus plots
- We can investigate the stability of our system by looking at how these poles moves based on the control parameters

Example - Root Locus Plot

Drawing on blackboard
Stability – Frequency domain

- Find the poles (λ_i) of the transfer function
- If $Re(\lambda_i) < 0$ for all λ_i in H(s) the system is asymptotically stable
- If one or more poles has $Re(\lambda_i) = 0$, but they are not in the same point the system is *marginally stable*
- If on or more poles has $Re(\lambda_i) > 0$ the system is *unstable*

Example - Stability

Drawing on blackboard

UiO **Department of Technology Systems**

University of Oslo

Feedback systems

- G(s) System Model
- C(s) Controller
- D(s) Disturbance
- H(s) Transducer (sensor model)
- R(s) Reference Input
- Y(s) Output Variable

Feedback systems

$$Y(s) = W(s)R(s) + W_D(s)D(s),$$
$$W(s) = \frac{C(s)G(s)}{1 + C(s)G(s)H(s)}$$

$$W_D(s) = \frac{G(s)}{1 + C(s)G(s)H(s)}$$

40

Feedback + Feedforward

- We want to regulate the system modeling error, therefore we add the feed forward parts F(s) and Dc(s), where Dc(s) is a model of the systems disturbances.
- Assuming we can model the system accurately a convenient choice is F(s) = 1/G(s)
- This decreases the systems time response (feedback systems can be slower)

Feedback + Feedforward

• The systems transfer function is then given as

$$Y(s) = \left(\frac{C(s)G(s)}{1 + C(s)G(s)H(s)} + \frac{F(s)G(s)}{1 + C(s)G(s)H(s)}\right)R(s)$$
(C.8)
+ $\frac{G(s)}{1 + C(s)G(s)H(s)}\left(D(s) - D_c(s)\right).$

Setpoint Controllers

- We will discuss three common controllers: P, PD and PID
 - All controllers attempt to drive the error (between a desired trajectory and the actual trajectory) to zero
- The system (G(s)) can have any dynamics, but we will use the following system as an example

$$\theta = \frac{U - D}{(Js^2 + Bs)}$$

Compact block diagram

Block diagram with basic building blocks

Setpoint Controllers – System Model

• A generic robot model is given as

 $J(q)\ddot{q} + C(q,\dot{q})\dot{q} + B\dot{q} + g(q) = \tau$

- $J(q)\ddot{q}$ Inertial forces
- $C(q, \dot{q})\dot{q}$ Coriolis and centrifugal forces
- *Bq* Viscous friction (damping)
- g(q) Gravitational forces
- *τ* Torque/Force from actuators

Setpoint Controllers – System Model

- In our example we assume that the following are treated as a disturbance D
 - Coriolis and centrifigal forces
 - Gravitational forces
 - Coupling between joints $(J(q)\ddot{q} \rightarrow J\ddot{q}$, Ineria is no longer dependent on the joint variables)

$$J(q)\ddot{q} + C(q,\dot{q})\dot{q} + B\dot{q} + g(q) = \tau$$
$$J\ddot{q} + B\dot{q} + D = \tau$$

• Transforming into the frequency domain (with Laplace) gives (remember that θ is our joint variable q)

$$Js^2\theta + Bs\theta + D = \tau$$

Setpoint Controllers – Motivation

- We will now look at different controllers for this system.
- We want the error between the reference (desired) value and the actual output value to go to zero
- The error is defined as $e(t) = \theta^d(t) \theta(t)$
- The controller use the error e(t) to calculate its output, also called *control effort*
- We denote the *control effort* as *u* (*"U" in the block diagram above*)
- We will look at the following controllers:
 - 1. Proportional (P) controller
 - 2. Proportional Derivative (PD) controller
 - 3. Proportional Integral Derivative (PID) controller

Proportional (P) Controller

- Control law: $U(t) = K_P e(t)$
 - Where $e(t) = \theta^d(t) \theta(t)$
- Taking the Laplace transformation gives:

 $U(s) = K_P E(s)$

Adding this controller to our system gives the following closed-loop system

UiO $\ensuremath{^{\bullet}}$ Department of Technology Systems

University of Oslo

J = 1 B = 0.7 D = 0.5 Kp = 1

UiO **Content of Technology Systems**

University of Oslo

Proportional Derivative (PD) Controller

- Control law: $U(t) = K_P e(t) + K_d \dot{e}(t)$
 - Where $e(t) = \theta^d(t) \theta(t)$
- Taking the Laplace transformation gives:

$$U(s) = (K_P + K_d s)E(s)$$

• Adding this controller to our system gives the following closed-loop system:

UiO **Department of Technology Systems**

University of Oslo

J = 1 B = 0.7 D = 0.5 Kp = 2.5 Kd=2

Proportional Derivative (PD) Controller

• Recall that this system can be described by:

$$\Theta(s) = \frac{U(s) - D(s)}{Js^2 + Bs}$$

Where, again, U(s) is:

$$U(s) = (K_{p} + sK_{d})(\Theta^{d}(s) - \Theta(s))$$

Combining these gives us:

$$\Theta(s) = \frac{(K_{p} + sK_{d})(\Theta^{d}(s) - \Theta(s)) - D(s)}{Js^{2} + Bs}$$

• Solving for Θ gives:

$$(Js^{2} + Bs)\Theta(s) + (K_{p} + sK_{d})\Theta(s) = (K_{p} + sK_{d})\Theta^{d}(s) - D(s)$$

$$\Rightarrow (Js^{2} + (B + K_{d})s + K_{p})\Theta(s) = (K_{p} + sK_{d})\Theta^{d}(s) - D(s)$$

$$\Rightarrow \Theta(s) = \frac{(K_{p} + sK_{d})\Theta^{d}(s) - D(s)}{Js^{2} + (B + K_{d})s + K_{p}}$$

Proportional Derivative (PD) Controller

- The denominator is the characteristic polynomial
- The roots of the characteristic polynomial determine the performance of the system

$$s^2 + \frac{\left(B + K_d\right)}{J}s + \frac{K_p}{J} = 0$$

• If we think of the closed-loop system as a damped second order system, this allows us to choose values of K_p and K_d

$$s^2 + 2\zeta\omega s + \omega^2 = 0$$

• Thus K_p and K_d are:

$$K_{p} = \omega^{2} J$$
$$K_{d} = 2\varsigma \omega J - B$$

- A natural choice is $\zeta = 1$ (critically damped)
 - \succ ζ < 1 − underdamped system
 - \succ ζ > 1 − overdamped system

Proportional Derivative (PD) Controller

- Limitations of the PD controller:
 - for illustration, let our desired trajectory be a step input and our disturbance be a constant as well:

$$\Theta^{d}(s) = \frac{C}{s}, D(s) = \frac{D}{s}$$

- Plugging this into our system description gives:

$$\Theta(\mathbf{s}) = \frac{(K_{\rho} + \mathbf{s}K_{d})\mathbf{C} - \mathbf{D}}{\mathbf{s}(\mathbf{J}\mathbf{s}^{2} + (\mathbf{B} + \mathbf{K}_{d})\mathbf{s} + \mathbf{K}_{\rho})}$$

– For these conditions, what is the steady-state value of the displacement?

$$\theta_{ss} = \lim_{s \to 0} \frac{s(K_{p} + sK_{d})C - sD}{s(Js^{2} + (B + K_{d})s + K_{p})} = \lim_{s \to 0} \frac{(K_{p} + sK_{d})C - D}{Js^{2} + (B + K_{d})s + K_{p}} = \frac{K_{p}C - D}{K_{p}} = C - \frac{D}{K_{p}}$$

- Thus the steady state error is $-D/K_p$
- Therefore to drive the error to zero in the presence of large disturbances, we need large gains... so we turn to another controller

$$\Theta(s) = \frac{\left(K_{d}s^{2} + K_{p}s + K_{i}\right)}{Js^{3} + \left(B + K_{d}\right)s^{2} + K_{p}s + K_{i}}$$

Proportional Integral Derivative (PID) controller

- Control law: $u(t) = K_{\rho} e(t) + K_{d} \dot{e}(t) + K_{i} \int e(t) dt$
- Taking the Laplace transformation gives:

$$U(s) = \left(K_{p} + K_{d}s + \frac{K_{i}}{s}\right)E(s)$$

• Adding this controller to our system gives the following closed-loop system:

UiO **Department of Technology Systems**

University of Oslo

J = 1

B = 0.7 D = 0.5 Kp = 2.5

Ki = 0.133 Kd=2

UiO **Department of Technology Systems**

J = 1 B = 0.7 D = 0.5 Kp = 2.5 Kd=2 Ki = 0.5

Proportional Integral Derivative (PID) controller

- How to determine PID gains
 - 1. Set $K_i = 0$ and solve for K_p and K_d
 - 2. Determine K_i to eliminate steady state error
 - However, we need to be careful of the stability conditions

$$K_i < \frac{(B+K_d)K_p}{J}$$

- In general real world testing we always start with determining K_p
- There are general methods for finding controller gains that could be used (ziegler nichols methods etc.)

Proportional Integral Derivative (PID) controller

- Stability
 - The closed-loop stability of these systems is determined by the roots of the characteristic polynomial

- If all roots (potentially complex) are in the 'left-half' plane, our system is stable
 - for any bounded input and disturbance

- A description of how the roots of the characteristic equation change (as a function of controller gains) is very valuable
 - Called the root locus (see example slide 36)

Setpoint Controllers – Summary

- **P**roportional
 - A pure proportional controller will have a steady-state error
 - High gain (Kp) will produce a fast system
 - High gain may cause oscillations and may make the system unstable
 - High gain reduces the steady-state error
- Integral
 - Removes steady-state error
 - Increasing Ki accelerates the controller
 - High Ki may give oscillations
 - Increasing Ki will increase the settling time
- Derivative
 - Larger Kd decreases oscillations
 - Improves stability for low values of Kd
 - May be highly sensitive to noise if one takes the derivative of a noisy error
 - High noise leads to instability

Example - Motor dynamics

- DC motors are ubiquitous in robotics applications
- Here, we develop a transfer function that describes the relationship between the input voltage and the output angular displacement
- First, a physical description of the most common motor: permanent magnet...

torque on the rotor:

 $\tau_m = \mathbf{K}_1 \phi \mathbf{i}_a$

ES159/259

- When a conductor moves in a magnetic field, a voltage is generated
 - Called back EMF:

$$V_b = K_2 \phi \omega_m$$

- Where ω_m is the rotor angular velocity

Similarly:

٠

Motor dynamics

• Since this is a permanent magnet motor, the magnetic flux is constant, we can write:

$$\tau_{m} = K_{1}\phi i_{a} = K_{m}i_{a}$$

torque constant
$$V_{b} = K_{2}\phi\omega_{m} = K_{b}\frac{d\theta_{m}}{dt}$$

back EMF constant

• K_m and K_b are numerically equivalent, thus there is one constant needed to characterize a motor

- This constant is determined from torque-speed curves
 - Remember, torque and displacement are work conjugates

- τ_0 is the *blocked torque*

Single link/joint dynamics

- Now, lets take our motor and connect it to a link
- Between the motor and link there is a gear such that: $\theta_m = r\theta_1$
- Lump the actuator and gear inertias: $J_m = J_a + J_g$
- Now we can write the dynamics of this mechanical system:

$$J_{m} \frac{d^{2} \theta_{m}}{dt^{2}} + B_{m} \frac{d \theta_{m}}{dt} = \tau_{m} - \frac{\tau_{L}}{r} = K_{m} i_{a} - \frac{\tau_{L}}{r}$$

$$\theta_{s} \tau_{l}$$

$$\theta_{s} \tau_{l}$$

$$\int J_{a} \int J_{g} \int J_{g} \int \theta_{m} = r \theta_{s}$$

ES159/259

• Now we have the ODEs describing this system in both the electrical and mechanical domains:

$$L\frac{di_{a}}{dt} + Ri_{a} = V - K_{b}\frac{d\theta_{m}}{dt}$$
$$J_{m}\frac{d^{2}\theta_{m}}{dt^{2}} + B_{m}\frac{d\theta_{m}}{dt} = K_{m}i_{a} - \frac{\tau_{L}}{r}$$

• In the Laplace domain:

$$(Ls + R)I_{a}(s) = V(s) - K_{b}s\Theta_{m}(s)$$
$$(J_{m}s^{2} + B_{m}s)\Theta_{m}(s) = K_{m}I_{a}(s) - \frac{\tau_{L}(s)}{r}$$

• These two can be combined to define, for example, the input-output relationship for the input voltage, load torque, and output displacement:

- Remember, we want to express the system as a transfer function from the input to the output angular displacement
 - But we have two potential inputs: the load torque and the armature voltage
 - First, assume $\tau_L = 0$ and solve for $\Theta_m(s)$:

$$\frac{(J_m s^2 + B_m s) \Theta_m(s)}{K_m} = I_a(s) \longrightarrow \frac{(Ls + R) (J_m s^2 + B_m s)}{K_m} \Theta_m(s) = V(s) - K_b s \Theta_m(s)$$
$$\longrightarrow \frac{\Theta_m(s)}{V(s)} = \frac{K_m}{s[(Ls + R) (J_m s + B_m) + K_b K_m]}$$

• Now consider that V(s) = 0 and solve for $\Theta_m(s)$:

$$I_{a}(s) = \frac{-K_{b}s\Theta_{m}(s)}{Ls+R} \longrightarrow (J_{m}s^{2}+B_{m}s)\Theta_{m}(s) = \frac{-K_{m}K_{b}s\Theta_{m}(s)}{Ls+R} - \frac{\tau_{L}(s)}{r}$$
$$\longrightarrow \frac{\Theta_{m}(s)}{\tau_{L}(s)} = \frac{-(Ls+R)/r}{s[(Ls+R)(J_{m}s+B_{m})+K_{b}K_{m}]}$$

- Note that this is a function of the gear ratio
 - The larger the gear ratio, the less effect external torques have on the angular displacement

- In this system there are two 'time constants'
 - Electrical: L/R
 - Mechanical: J_m/B_m
- For intuitively obvious reasons, the electrical time constant is assumed to be small compared to the mechanical time constant
 - Thus, ignoring electrical time constant will lead to a simpler version of the previous equations:

$$\frac{\Theta_m(s)}{V(s)} = \frac{K_m / R}{s[J_m s + B_m + K_b K_m / R]}$$
$$\frac{\Theta_m(s)}{\tau_L(s)} = \frac{-1/r}{s[J_m s + B_m + K_b K_m / R]}$$

• Rewriting these in the time domain gives:

$$\frac{\Theta_m(s)}{V(s)} = \frac{K_m/R}{s[J_m s + B_m + K_b K_m/R]} \longrightarrow J_m \ddot{\Theta}_m(t) + (B_m + K_b K_m/R) \dot{\Theta}_m(t) = (K_m/R) V(t)$$

$$\frac{\Theta_m(s)}{\tau_L(s)} = \frac{-1/r}{s[J_m s + B_m + K_b K_m/R]} \longrightarrow J_m \ddot{\Theta}_m(t) + (B_m + K_b K_m/R) \dot{\Theta}_m(t) = -(1/R) \tau_L(t)$$

• By superposition of the solutions of these two linear 2nd order ODEs: $\underbrace{J_m \ddot{\theta}_m(t) + \underbrace{(B_m + K_b K_m / R)}_B \dot{\theta}_m(t) = \underbrace{(K_m / R) V(t)}_U - \underbrace{(1/R) \tau_L(t)}_{d(t)}}_{u(t)}$

Motor dynamics

• Therefore, we can write the dynamics of a DC motor attached to a load as:

$$J\ddot{\theta}(t) + B\dot{\theta}(t) = u(t) - d(t)$$

- Note that u(t) is the input and d(t) is the disturbance (e.g. the dynamic coupling from motion of other links)
- To represent this as a transfer function, take the Laplace transform:

$$(Js^{2} + Bs)\Theta(s) = U(s) - D(s) \longrightarrow U + \underbrace{\bigcup_{Js+B}}_{Js+B} \longrightarrow \underbrace{\frac{1}{s}}_{S} \Theta_{m}$$