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Lecture overview

« General introduction to control theory

— Motivation
« Self regulating systems (pendulum at equilibrium)
» Unstable systems (car speed)
— Open and closed loop systems
* Open loop (washing machine)
— Feed forward (car speed — incline as disturbance model)
» Closed loop
— Feedback (cruise control)
— Stability
» Stable systems
» Unstable systems



https://www.youtube.com/watch?v=b9eDwB9bSqE
https://youtu.be/L-Q6xg2KbCA
https://youtu.be/UdmlPu33Iew?t=23
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Definition input/output stability

« Asymptotically stable if:
- y - 0when t - o and u has a finite duration and amplitude

« Marginally stable if:
- |y| < oo for all t = 0 and u has a finite duration and amplitude

 Unstable otherwise
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Robot Control

« We want to control the joint positions (configuration) of a
robot

— Therefore we need to figure out how we can determine the
motor/actuator inputs so as to command the robot to a desired
configuration

* In general, the input (voltage/current) does not create

Instantaneous motion to a desired configuration because of

the robots dynamical properties

« There are also other real world elements that affect the
robots motion like backlash (clearance between gear tooths
- causes hysteresis) and the properties of the motor/actuator
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Robot Control

« We shall focus on single input single output systems (SISO)
meaning that we only look at each joint by itself

« We therefore assume that each joint is affected only by itself

« This means that the contributions from the other joints are
treated as a disturbance

« Before we can start to control a joint, we need to model the
joint and look at its properties.
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Robot control - Modelling

 From dynamics we have the ordinary differential equation
(ODE) for the robot. We have n non-linear eguations as a
result of n joint variables, all expressed in the time domain.

« These n equations often depends on each other

« We want to transform these equations into n linear,
Independent equations

« We do this by treating the non-linear effects and the
dependence of other joints as disturbance
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Example — Robot modeling

Ly
zzz4

The dynamic equations are given as

mL%Ql + 2mL2L291 — mgleQ =T
mﬁ2 — TRLQH.% —mgcy = Fy

We shall now give a linearization of the first equation
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Robot control - Modeling

 We now have a set of independent linear equations
« We want to analyse the properties of these systems

« Laplace transform can be used to transform the equations
Into the frequency domain

— This transforms the equations from a ordinary differential equations
Into a linear equations, which easier to solve

— We can analyse important system properties in the frequency
domain, such as stability and step response
* Block diagrams can be used to visualize the equations for
the system and possible feedback loops
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Laplace transform

* The Laplace transform is defined as follows:

X(s)=[ex(t)t
0
* For example, Laplace transform of a derivative:
. dx(t)] % dx(t)
Lix(t); = = —dt
)= L 2 = e 24
— Integrating by parts:

{dx( )} — e x(t); +s[e itk

dt 0
= sx(s)-x(0)

10
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Laplace transform

« Similarly, Laplace transform of a second derivative:

() = L{dzx(t)} - Jo CWg1 - six(s)-sx(0)-x(0)

2
dt )
« Thus, if we have a generic 2" order system described by the following ODE:
mx(t)+ bx(t)+kx(t)=F(t)

« And we want to get a transfer function representation of the system, take the
Laplace transform of both sides:

mL{X(t)}+ bL{x(t)}+ kL{x(t)} = L{F(t)}

m(s°x(s)-sx(0)— x(0))+ b(sx(s)- x(0)) + kx(s) = F(s)

11
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Laplace transform

Continuing:
(ms? +bs +k x(s) = F(s)+mx(0)+(ms +c)x(0)

« The transient response is the solution of the above ODE if the forcing function
Ft)=0

» The steady state response is the solution of the above equation if the initial

conditions are zero
« This yields the equation

(ms? + bs + k)x(s) = F(s)

12
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Common Laplace functions

B~

At —= 0

At

o(t) = limas—o g(t, At)

~ L0<t <At
0 1 <0t > At

w | =

13
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Review of the Laplace transform

» Properties of the Laplace transform

Takes an ODE to a algebraic equation

Differentiation in the time domain is multiplication by s in the
Laplace domain

Integration in the time domain is multiplication by 1/s in the
Laplace domain

Considers initial conditions
* I.e. transient and steady-state response

The Laplace transform is a linear operator

16
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Transfer functions

« When all initial conditions of a Laplace transform are zero,
the response Y(s) of a linear system is given by its input
X(s) and its transfer function H(s)

Y(s) = H(s) X(s)

9 Hes

X(s)

« The denominator (X(s)) of the transfer function is called the
characteristic polynomial

17
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Example cont. — Robot modeling

Ly
zzz4

We can now derive the transfer functions for the robot in the frequency domain
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Example — Mass spring damper system

19
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Block diagrams

* A block diagram visalizes one or more equations
« Makes it easier to see feedback and feed forward loops

20
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Block diagram symbols

u(s) au(s)

— a

u1(s)

uz(s)
l 2

ul—UQ+U3

1
AN u(s) 1 ~u(s)
— ] -
S
Multiplication us(s)
with constant Addition/subtraction Integral
u(s) su(s) u(s) h(s)u(s) | wu(s) e "Su(s)
— S —_— h(s) —_—] o7 TS
Derivative Transfer function Time delay

21
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Example cont. — Robot modeling

Ly
zzz4

Drawing a block diagram

The transfer function as given as:

15291 — 601 + D = 11
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Drawing a block diagram of a mass spring damper
system

o xs2 =1 (y— _
XS —m(u fxs — kx)

23
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Manipulation of block diagrams

Z1 Z9 23
—> hu(s) > ha(s)
| <2
—> ha(s)
<1 l’ <24
+
<3
-

hi(s)ha(s)

hi(s) £ ha(s)
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Manipulation of block diagrams

21 | <3
> > h;l(S’)
+
<2
21 <3
E— }?,1(9) >
+
<2

Z1 <3
. h,l (9)
+
P,
hq (9) -—
21 | 3
’Q h,-l (9)
+
1 <2
<
hl(S)
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Manipulation of block diagrams

<1

<1

h] (9)

<2

<1

21 | <2
hq (S) > ¢
21 1
-
hl(S)
<1 |
hl (S)
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Manipulation of block diagrams

21 zZ2 Z3
—O—{ M(s) .
-
zZ4
ho (S’) —

Prove on blackboard

<1

hi(s)

Z3

1 F hi(s)hsa(s)

27
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Zeros and poles of the transfer functions

« For rational transferfunctions we denote the roots of the
nominator zeros and roots of the denominator poles

« The poles gives important characteristics about the transfer

function
ppSP + -+ p1st + pg
S"+ a1 ST+ et ag s+
pp(s — v1) (s — 1)
(5= A1) = (s— 4An)

h(s) =

h(s) =

« We call the polynomial in the denominator the characteristic
polynomial

28
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Examples — Finding roots and zeros

« Example 1: Given transfer function

« Example 2: Mass-spring-damper system

29
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Example cases

Three cases depending on the poles
Case I: Poles are real and distinct

— Over-damped system

Case Il: Poles are real and equal

— Critically damped system

Case lll: Poles are complex conjugates
— Under-damped system

30
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Time responses

ky(r) 4

151

057

2 4 6 8 10 12 ®t 5
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Effect of changes in poles

konstant o og

gkende 3

konstant { og
gkende

konstant [} og
gkende o e

i Im

- = 4
-

konstant Wy og pkende

langs sirkelen mot
urviseren

A |
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Common transfer functions and their poles and
step respones

Transfer-

Nullpunkter og poler

funksjon h(s) P gp Sprangrepons
Im K

K

Re

1
1 g
K ﬁ s

l oY A R p——
1+ Ts K

Ts

'

K1+Ts

|
T
‘—’/‘:/
i
T
= = o
|
T
Ts -
k
K+ Ts AN
| T
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] Nullpunkter og poler Sprangrepons
funksjon h(s) : Ep prangrep

1+ Tys Lol i

1+T;s Kt - T

Ty>T, T, b

L+ Tys Kf =

1+ Tys 3 KTy Ty ™ |
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K Jjog % 2K

‘jmu’l‘ i
K X
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Root locus plots

* Instead of using constant values in the transfer function we
now assume that we can vary one (or more) parameters

« Changing this parameter will move the poles and zeros in
the complex plane

« The paths of zeros and poles in the complex plane as a
function of changed controller parameters are called root
locus plots

« We can investigate the stability of our system by looking at
how these poles moves based on the control parameters

35
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Example - Root Locus Plot

Drawing on blackboard
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Stability — Frequency domain

* Find the poles (4;) of the transfer function
* If Re(4;) < 0 for all A; in H(s) the system is asymptotically
stable

 If one or more poles has Re(4;) = 0, but they are not in the
same point the system is marginally stable

 If on or more poles has Re(4;) > 0 the system is unstable

37
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Example - Stability

Drawing on blackboard
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* G(s) — System Model

« C(s) — Controller

Feedback systems * D(s) - Disturbance

* H(s) — Transducer (sensor model)
* R(s) — Reference Input

* Y(s) — Output Variable

D(s)

_|.

R(s) _ ~ ] Y(s)
—4-FQ§—F C(s) =X > G(s) [ >
H(s) [

39
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Feedback systems

Y(s) = W(s)R(s) + Wp(s)D(s).

Viel — CT(S)G(S)
Wis) = 1+ C(s)G(s)H(s)
Wols) = T emaHER)

40
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Feedback + Feedforward

« We want to regulate the system modeling error, therefore we add the feed forward
parts F(s) and Dc(s), where Dc(s) is a model of the systems disturbances.

« Assuming we can model the system accurately a convenient choice is F(s) = 1/G(s)

» This decreases the systems time response (feedback systems can be slower)

D.(s)

+| - +lD(S)
H{E)—m >I<_ » C(s) +w§§;’/+>® » G(s) }.;LS}--

41




UiO ¢ Department of Technology Systems

University of Oslo

Feedback + Feedforward

« The systems transfer function is then given as

S C'(s)G(s) F(s)G(s)
Y6) = (Tr oot mm * TTowew
n G(s)
1+ C(s)G(s)H (s)

(H)) R(s) (C.8)

(D(s) — D.(s)).

42
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Setpoint Controllers

 We will discuss three common controllers: P, PD and PID

— All controllers attempt to drive the error (between a desired trajectory
and the actual trajectory) to zero

« The system (G(s)) can have any dynamics, but we will use the
following system as an example

,__U-D
~ (Js2 + Bs)
| ]
+ ¥ - 1 1 + 3 1 |s20| 1 [so] 1
U/ > > > — >0 U—()— — ] - —_> = }—>0
O Js+B S B J S S

B |

Compact block diagram Block diagram with basic building blocks



UiO ¢ Department of Technology Systems
University of Oslo

D
o

v—C Js+DB

| =

— 0

Setpoint Controllers — System Model

A generic robot model is given as

J@4G+C(q,q)g+Bg+g(q) =1

J(@)g
C(q,9)q
Bq
9(q)

T

Inertial forces

Coriolis and centrifugal forces
Viscous friction (damping)
Gravitational forces
Torque/Force from actuators

44
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Setpoint Controllers — System Model

* In our example we assume that the following are treated as
a disturbance D
— Coriolis and centrifigal forces
— Gravitational forces

— Coupling between joints (J(q)g§ — /g, Ineria is no longer dependent
on the joint variables)

J(@4+C(q,q)q+Bg+g(q) =1
JGg+Bg+D =t

« Transforming into the frequency domain (with Laplace) gives
(remember that 6 is our joint variable q)

Js?0+BsO+D =1

45
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Setpoint Controllers — Motivation

« We will now look at different controllers for this system.

« We want the error between the reference (desired) value and the actual
output value to go to zero

« The error is defined as e(t) = 89(t) — 6(¢t)

« The controller use the error e(t) to calculate its output, also called
control effort

* We denote the control effort as u (“U” in the block diagram above)

* We will look at the following controllers:
1. Proportional (P) controller
2. Proportional Derivative (PD) controller
3. Proportional Integral Derivative (PID) controller
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Proportional (P) Controller

 Control law:

U(t) = Kpe(t)

« Where e(t) = 8%(t) — 6(t)

« Taking the Laplace transformation gives:

U(s) = KpE(s)

« Adding this controller to our system gives the following closed-loop system

+ E
0, —O——»
_h

D
g + r + l_ 20 e
KB 1 SU A = 1 [s’9f 1 |se
J S
Bs© | p

6

1
S

>0
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o Increasing the gain yields: -
Faster response
I Decreased steady state error ]
Increased oscillations
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Proportional Derivative (PD) Controller

« Control law: U(t) = Kpe(t) + K é(t)
« Where e(t) = 04(¢t) — 6(t)

« Taking the Laplace transformation gives:

U(s) = (Kp+Kis)E(s)

* Adding this controller to our system gives the following closed-loop system:

D

-

+ + + 20
Oq4 —( )—»E K D Kyl >O U >O > > l] REATS 9
A ¢

1

sO

1

a

+ ‘ =
- | K,s0 BsO
O~ K4 : B

‘ sO

$Oy =0 -

+
L . o

S

>0



We see that the Derivative
term has a damping effect

B=07 D=05 Kp=25




UiO ¢ Department of Technology Systems

University of Oslo

Proportional Derivative (PD) Controller

| | U(s)-D(s)
) " @ =
Recall that this system can be described by: (S) 352+ Bs
* Where, again, U(s) is: U(s) = (Kp +sK, )(@d (S)—@(S))

: ining these gi :
Combining these gives us K, +K, )(@d (s)- @(s))— D(s)

Js® +Bs

o6)-!
« Solving for @ gives:

(952 +Bs)o(s)+ (K, +sK, Jo(s) = (K, +sK, Jo°(s)-D(s)
= (9s% +(B+K, )s +K, Jo(s) = (K, +sK, Jo°(s)-D(s)
(Kp + 8Ky )@d (S)_D(S)

Js? +(B+Ky s +K,

— @(s):
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Proportional Derivative (PD) Controller

« The denominator is the characteristic polynomial

« The roots of the characteristic polynomial determine the performance of
the system
2 (B +K4 ) Kp

S°+ s+—=0
J J

 |f we think of the closed-loop system as a damped second order system,
this allows us to choose values of K, and Ky

S° +2lws +w° =0
* Thus K; and K are:
K, = »°J
Ky =260 — B
* A natural choice is {'= 1 (critically damped)

» (<1-underdamped system
» (>1-overdamped system
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Proportional Derivative (PD) Controller

« Limitations of the PD controller:
— for illustration, let our desired trajectory be a step input and our
disturbance be a constant as well:

C D
®°(s)==,D(s)=—
(5)="2.06s) =
— Plugging this into our system description gives:
(K, +sK,)c-D
@(S): 2
S(JS +(B+Kd)s+Kp)
— For these conditions, what is the steady-state value of the
displacement?

6. —iim s(K, +sK,Jc —sD . (K, +sK,c-D _KC-D_. D

s>05(Js? +(B+K, s +K,) s03s?+(B+K,s+K, K K

p p

— Thus the steady state error is =D/K,

— Therefore to drive the error to zero in the presence of large
disturbances, we need large gains... so we turn to another controller
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(Kgs?+K, 54K )9(s)-sD(s)

O(s)=

Proportional Integral Derivative (PID) controller
u(t)=K,e(t)+ K,é(t)+ K, [ e(t)t

« Taking the Laplace transformation gives:

U(s)= (Kp + K4S+ 5jE(s)

 Control law:

S

Js® +(B+Ky)s® +K, s +K,

« Adding this controller to our system gives the following closed-loop system:

o
1
O
&
v

s0 =0 ---}-

- 1 [S4F
> I\,’ — '
S
K,E + )
Kp : ~(
+
Ifds(")
’O_> Kd

sO

\ J

W |

>0




. The Ki term removes the steady
state error

D=0.5 Kp=25 Kd=2 Ki=0.133



To high Ki can cause overshoot,
oscillations or instability

D=05 Kp=25 Kd=2
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Proportional Integral Derivative (PID) controller

* How to determine PID gains
1. Set K; = 0 and solve for K, and K,

2. Determine K; to eliminate steady state error
* However, we need to be careful of the stability conditions

< <(B+Kd)Kp
| J

— In general real world testing we always start with determining K

— There are general methods for finding controller gains that could
be used (ziegler nichols methods etc.)
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Proportional Integral Derivative (PID) controller

+ Stability
— The closed-loop stability of these systems is determined by the
roots of the characteristic polynomial

Im{s}

Left-half S-plane

— If all roots (potentially complex) are in

the ‘left-half’ plane, our system is stable
« for any bounded input and disturbance

— A description of how the roots of the characteristic equation
change (as a function of controller gains) is very valuable
» Called the root locus (see example slide 36)
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Setpoint Controllers — Summary

* Proportional
— A pure proportional controller will have a steady-state error
— High gain (Kp) will produce a fast system
— High gain may cause oscillations and may make the system unstable
— High gain reduces the steady-state error

* Integral
— Removes steady-state error
— Increasing Ki accelerates the controller
— High Ki may give oscillations
— Increasing Ki will increase the settling time

» Derivative
— Larger Kd decreases oscillations
— Improves stability for low values of Kd
— May be highly sensitive to noise if one takes the derivative of a noisy error
— High noise leads to instability
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Example - Motor dynamics

« DC motors are ubiquitous in robotics applications

« Here, we develop a transfer function that describes the relationship
between the input voltage and the output angular displacement

* First, a physical description of the most common motor: permanent
magnet...

torque on the rotor:
Tm =K,

ES159/259
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Physical instantiation

A
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Motor dynamics

 When a conductor moves in a magnetic field, a voltage is generated
— Called back EMF:
Vb = K2¢a)m
— Where a,, is the rotor angular velocity
armature inductance

armature resistance

/

L R
— T AW
lq n d)
v D X
Tms enu Te
d.
L

A LRI, =V -V,
dt

ES159/259
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Motor dynamics

« Since this is a permanent magnet motor, the magnetic flux is constant,
we can write:

Tm — Kl¢ia - Kmia

 Similarly: torque constant

dé
V, =K, 90, =K, dtm

back EMF constant

+ K, and K, are numerically equivalent, thus there is one constant
needed to characterize a motor

ES159/259
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Motor dynamics

« This constant is determined from torque-speed curves
— Remember, torque and displacement are work conjugates
Torque

f

Vi< Vo <. ..

0 Speed w, [rad/ :;ee]

— 1, is the blocked torque

ES159/259
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Single link/joint dynamics

* Now, lets take our motor and connect it to a link

* Between the motor and link there is a gear such that: 9_=rg,
* Lump the actuator and gear inertias: J,, =J, +J,

* Now we can write the dynamics of this mechanical system:
d°e, dé, T,

m 2 +Bm :Tm__:Kmia__
dt dt r r

ES159/259
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Motor dynamics

« Now we have the ODEs describing this system in both the electrical
and mechanical domains:

di

2 4RI =V —K, 39
dt

m

dt
2
m d ezm +Bm dem :Kmia__
dt dt r

* In the Laplace domain:
(Ls+R)I(s)=V(s)-K,sO,(s)

(Jmsz + Bms)@m (S): Kmla(s)_ TL(S)

L

J

ES159/259
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Motor dynamics

« These two can be combined to define, for example, the input-output
relationship for the input voltage, load torque, and output displacement:

/7
‘/r('_q) ofs 1 Ia‘(S) - _}_J\— 1 1 9772,(.S'>
CJ>— Ls+R K T V Jms+Bm s |

ES159/259
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Motor dynamics

« Remember, we want to express the system as a transfer function from
the input to the output angular displacement
— But we have two potential inputs: the load torque and the armature voltage
— First, assume 7 = 0 and solve for @.,(s):

(Jms2 +Bms)@m(s) _1(s) (Ls+R)(Jms2 +Bms)@
Km a K m

m

(8)=VI(s)-K;s0,(s)

On(s) _ Ko
V(s) s[Ls+R)J, s+B, )+KK, ]

»
»
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« Now consider that V(s) = 0 and solve for @,.(s):

= KbS@m (S) > (J 2 B — KmeS@m (S) _ TL(S)
Ia(S)_ LS-I—R ( mS + msbm(s) LS+R r
0, (s) —(Ls +R)/r

L —

r.(s) s|lLs+R)J,s+B, )+K.K, ]

* Note that this is a function of the gear ratio

— The larger the gear ratio, the less effect external torques have on the
angular displacement
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* In this system there are two ‘time constants’
— Electrical: L/R
— Mechanical: J/B,,

« For intuitively obvious reasons, the electrical time constant is assumed
to be small compared to the mechanical time constant

— Thus, ignoring electrical time constant will lead to a simpler version of the
previous equations:

0,(s) K, /R
V(s) s[J,s+B,+KK, /R]

0,(s) ~1r
7,(s) s[3,.s+B, +K.K_ /R]
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Rewriting these in the time domain gives:

On(s) _ K /R »J 0 (t)+(B. +K. K /R (t)=(K_ /RM(t
Ve stk R] o B KK IR )= (K FRV Y
@m(s)_ ml »J 0 (t)+(B. +K K /R)O.(t)=—1L/R)(t
7(s) s[I.s+B, +K,K,/R] n0n(0)+ B + KoK IR), (1) = (/R t)
~— _
-

By superposition of the solutions of these two linear 2" order ODEs:

3.6 (t)+(B, +K,K,_/R). (t)=(K,, /R)\/(tz—gllR)fL(tj)

\_Y_} - YT -~ ~ Y Y
J B u(t) d(t)
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« Therefore, we can write the dynamics of a DC motor attached to a load

as: JO(t)+Bo(t)=ult)-d(t)

— Note that u(t) is the input and d(t) is the disturbance (e.g. the dynamic
coupling from motion of other links)

« To represent this as a transfer function, take the Laplace transform:

9s® +Bs)o(s)=U(s)-D(s) — v % i ] O
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