UiO : Department of Technology Systems
University of Oslo

Lecture 11 - Control Theory

Kim Mathiassen
$\mathrm{UiO}:$ Department of Technology Systems
University of Oslo

Control of Manipulators and Mobile Robots
UNIK4490/TEK4030

University of Oslo

Lecture overview

- General introduction to control theory
- Motivation
- Self regulating systems (pendulum at equilibrium)
- Unstable systems (car speed)
- Open and closed loop systems
- Open loop (washing machine)
- Feed forward (car speed - incline as disturbance model)
- Closed loop
- Feedback (cruise control)
- Stability
- Stable systems
- Unstable systems

University of Oslo

Definition input/output stability

- Asymptotically stable if:
- $y \rightarrow 0$ when $t \rightarrow \infty$ and u has a finite duration and amplitude
- Marginally stable if:
- $|y|<\infty$ for all $t \geq 0$ and u has a finite duration and amplitude
- Unstable otherwise

Robot Control

- We want to control the joint positions (configuration) of a robot
- Therefore we need to figure out how we can determine the motor/actuator inputs so as to command the robot to a desired configuration
- In general, the input (voltage/current) does not create instantaneous motion to a desired configuration because of the robots dynamical properties
- There are also other real world elements that affect the robots motion like backlash (clearance between gear tooths - causes hysteresis) and the properties of the motor/actuator

Robot Control

- We shall focus on single input single output systems (SISO) meaning that we only look at each joint by itself
- We therefore assume that each joint is affected only by itself
- This means that the contributions from the other joints are treated as a disturbance
- Before we can start to control a joint, we need to model the joint and look at its properties.

Robot control - Modelling

- From dynamics we have the ordinary differential equation (ODE) for the robot. We have n non-linear equations as a result of n joint variables, all expressed in the time domain.
- These n equations often depends on each other
- We want to transform these equations into n linear, independent equations
- We do this by treating the non-linear effects and the dependence of other joints as disturbance

Example - Robot modeling

The dynamic equations are given as

$$
\begin{aligned}
m L_{2}^{2} \ddot{\theta}_{1}+2 m L_{2} \dot{L}_{2} \dot{\theta}_{1}-m g s_{1} L_{2} & =\tau_{1} \\
m \ddot{L}_{2}-m L_{2} \dot{\theta}_{1}^{2}-m g c_{1} & =F_{2}
\end{aligned}
$$

We shall now give a linearization of the first equation

Robot control - Modeling

- We now have a set of independent linear equations
- We want to analyse the properties of these systems
- Laplace transform can be used to transform the equations into the frequency domain
- This transforms the equations from a ordinary differential equations into a linear equations, which easier to solve
- We can analyse important system properties in the frequency domain, such as stability and step response
- Block diagrams can be used to visualize the equations for the system and possible feedback loops

University of Oslo

Laplace transform

- The Laplace transform is defined as follows:

$$
x(s)=\int_{0}^{\infty} e^{-s t} x(t) d t
$$

- For example, Laplace transform of a derivative:

$$
L\{\dot{x}(t)\}=L\left\{\frac{d x(t)}{d t}\right\}=\int_{0}^{\infty} e^{-s t} \frac{d x(t)}{d t} d t
$$

- Integrating by parts:

$$
\begin{aligned}
L\left\{\frac{d x(t)}{d t}\right\} & =\left.e^{-s t} x(t)\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} x(t) d t \\
& =s x(s)-x(0)
\end{aligned}
$$

University of Oslo

Laplace transform

- Similarly, Laplace transform of a second derivative:

$$
L\{\ddot{x}(t)\}=L\left\{\frac{d^{2} x(t)}{d t^{2}}\right\}=\int_{0}^{\infty} e^{-s t} \frac{d^{2} x(t)}{d t^{2}} d t=s^{2} x(s)-s x(0)-\dot{x}(0)
$$

- Thus, if we have a generic $2^{\text {nd }}$ order system described by the following ODE:

$$
m \ddot{x}(t)+b \dot{x}(t)+k x(t)=F(t)
$$

- And we want to get a transfer function representation of the system, take the Laplace transform of both sides:

$$
\begin{aligned}
& m L\{\ddot{x}(t)\}+b L\{\dot{x}(t)\}+k L\{x(t)\}=L\{F(t)\} \\
& m\left(s^{2} x(s)-s x(0)-\dot{x}(0)\right)+b(s x(s)-x(0))+k x(s)=F(s)
\end{aligned}
$$

University of Oslo

Laplace transform

- Continuing:

$$
\left(m s^{2}+b s+k\right) x(s)=F(s)+m \dot{x}(0)+(m s+c) x(0)
$$

- The transient response is the solution of the above ODE if the forcing function $F(t)=0$
- The steady state response is the solution of the above equation if the initial conditions are zero
- This yields the equation

$$
\left(m s^{2}+b s+k\right) x(s)=F(s)
$$

University of Oslo

Common Laplace functions

	$\begin{array}{r} \delta(t)=\lim _{\Delta t \rightarrow 0} g(t, \Delta t) \\ g(t, \Delta t)= \begin{cases}\frac{1}{\Delta t} & , 0<t<\Delta t \\ 0 & , 1<0, t>\Delta t\end{cases} \end{array}$	1
	$f(t)= \begin{cases}1 & , t \geq 0 \\ 0 & , t<0\end{cases}$	$\frac{1}{s}$

UiO : Department of Technology Systems

University of Oslo

	$f(t)= \begin{cases}t & , t \geq 0 \\ 0 & , t<0\end{cases}$	$\frac{1}{s^{2}}$
	$f(t)= \begin{cases}t^{2} & , t \geq 0 \\ 0 & , t<0\end{cases}$	$\frac{1}{s^{3}}$
	$f(t)= \begin{cases}e^{-\alpha t} & , t \geq 0 \\ 0 & , t<0\end{cases}$	$\frac{1}{s+\alpha}=\frac{T}{1+T s}$

UiO : Department of Technology Systems

University of Oslo

University of Oslo

Review of the Laplace transform

- Properties of the Laplace transform
- Takes an ODE to a algebraic equation
- Differentiation in the time domain is multiplication by s in the Laplace domain
- Integration in the time domain is multiplication by $1 / s$ in the Laplace domain
- Considers initial conditions
- i.e. transient and steady-state response
- The Laplace transform is a linear operator

Transfer functions

- When all initial conditions of a Laplace transform are zero, the response $\mathrm{Y}(\mathrm{s})$ of a linear system is given by its input $X(s)$ and its transfer function $H(s)$

$$
\begin{gathered}
Y(s)=H(s) X(s) \\
\frac{Y(s)}{X(s)}=H(s)
\end{gathered}
$$

- The denominator $(X(s))$ of the transfer function is called the characteristic polynomial

Example cont. - Robot modeling

We can now derive the transfer functions for the robot in the frequency domain

Example - Mass spring damper system

University of Oslo

Block diagrams

- A block diagram visalizes one or more equations
- Makes it easier to see feedback and feed forward loops

Block diagram symbols

Multiplication with constant	 Addition/subtraction	$\xrightarrow{u(s)} \frac{1}{s}{ }^{\frac{1}{s} u(s)}$ Integral
Derivative	Transfer function	Time delay

Example cont. - Robot modeling

Drawing a block diagram

The transfer function as given as:

$$
J s^{2} \theta_{1}-G \theta_{1}+D=\tau_{1}
$$

Drawing a block diagram of a mass spring damper system

- $x s^{2}=\frac{1}{m}(u-f x s-k x)$

UiO : Department of Technology Systems
University of Oslo

Manipulation of block diagrams

Manipulation of block diagrams

UiO : Department of Technology Systems
University of Oslo

Manipulation of block diagrams

Manipulation of block diagrams

Prove on blackboard

Zeros and poles of the transfer functions

- For rational transferfunctions we denote the roots of the nominator zeros and roots of the denominator poles
- The poles gives important characteristics about the transfer function

$$
\begin{gathered}
h(s)=\frac{\rho_{p} s^{p}+\cdots+\rho_{1} s^{1}+\rho_{0}}{s^{n}+\alpha_{n-1} s^{n-1}+\cdots+\alpha_{1} s+\alpha_{0}} \\
h(s)=\frac{\rho_{p}\left(s-v_{1}\right) \cdots\left(s-v_{p}\right)}{\left(s-\lambda_{1}\right) \cdots\left(s-\lambda_{n}\right)}
\end{gathered}
$$

- We call the polynomial in the denominator the characteristic polynomial

University of Oslo

Examples - Finding roots and zeros

- Example 1: Given transfer function
- Example 2: Mass-spring-damper system

University of Oslo

Example cases

- Three cases depending on the poles
- Case I: Poles are real and distinct
- Over-damped system
- Case II: Poles are real and equal
- Critically damped system
- Case III: Poles are complex conjugates
- Under-damped system

UiO : Department of Technology Systems
University of Oslo

Time responses

UiO : Department of Technology Systems

University of Oslo

Effect of changes in poles

Common transfer functions and their poles and step respones

Transferfunksjon $h(s)$	Nullpunkter og poler	Sprangrepons
K	$-{ }^{\mathrm{Im}}$	
$K_{\text {Ts }} \frac{1}{}$		
$K \frac{1+T s}{T s}$		
$K \frac{1}{1+T s}$		
$K_{\text {K }} \frac{T s}{1+T s}$		

Transferfunksjon $h(s)$	Nullpunkter og poler	Sprangrepons
$\begin{gathered} \frac{1+T_{2} s}{1+T_{1} s} \\ T_{2}>T_{1} \end{gathered}$	$\begin{array}{cc\|c} x & 0 & 0 \\ \hline-\frac{1}{T_{1}} & -\frac{1}{T_{2}} & \\ \hline \end{array}$	
$\begin{gathered} K \frac{1+T_{2} s}{1+T_{1} s} \\ T_{2}<T_{1} \end{gathered}$	$\begin{array}{cc\|c} \hline-\frac{1}{T_{2}} & -\frac{1}{T_{1}} & \\ \hline \end{array}$	$\begin{array}{c\|c} K+ \\ { }^{K} T_{2} / T_{1} \\ & \vdots \\ \hline & T_{1} \\ \hline \end{array}$
$\frac{K}{1+\left(\frac{s}{\omega_{0}}\right)^{2}}$	$\xrightarrow[-j \omega_{0} *]{{ }^{j \omega_{0} *}}$	
$\frac{K}{1+2 \zeta \frac{s}{\omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}}$		
$\frac{K s}{1+2 \zeta \frac{s}{\omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}}$		
$\frac{K(1+T s)}{1+2 \zeta \frac{s}{\omega_{0}}+\left(\frac{s}{\omega_{0}}\right)^{2}}$	$\begin{array}{l\|l\|} \hline \times & \\ \hline \times-\frac{1}{T} & \\ \hline \end{array}$	

Root locus plots

- Instead of using constant values in the transfer function we now assume that we can vary one (or more) parameters
- Changing this parameter will move the poles and zeros in the complex plane
- The paths of zeros and poles in the complex plane as a function of changed controller parameters are called root locus plots
- We can investigate the stability of our system by looking at how these poles moves based on the control parameters

Example - Root Locus Plot

Drawing on blackboard

University of Oslo

Stability - Frequency domain

- Find the poles $\left(\lambda_{i}\right)$ of the transfer function
- If $\operatorname{Re}\left(\lambda_{i}\right)<0$ for all λ_{i} in $\mathrm{H}(\mathrm{s})$ the system is asymptotically stable
- If one or more poles has $\operatorname{Re}\left(\lambda_{i}\right)=0$, but they are not in the same point the system is marginally stable
- If on or more poles has $\operatorname{Re}\left(\lambda_{i}\right)>0$ the system is unstable

University of Oslo

Example - Stability

Drawing on blackboard

- G(s) - System Model
- C(s) - Controller

Feedback systems

- D(s) - Disturbance
- H(s) - Transducer (sensor model)
- R(s) - Reference Input
- Y(s) - Output Variable

Feedback systems

$$
\begin{aligned}
& Y(s)=W(s) R(s)+W_{D}(s) D(s) \\
& W(s)=\frac{C(s) G(s)}{1+C(s) G(s) H(s)} \\
& W_{D}(s)=\frac{G(s)}{1+C(s) G(s) H(s)}
\end{aligned}
$$

University of Oslo

Feedback + Feedforward

- We want to regulate the system modeling error, therefore we add the feed forward parts $\mathrm{F}(\mathrm{s})$ and $\mathrm{Dc}(\mathrm{s})$, where $\mathrm{Dc}(\mathrm{s})$ is a model of the systems disturbances.
- Assuming we can model the system accurately a convenient choice is $F(s)=1 / G(s)$
- This decreases the systems time response (feedback systems can be slower)

Feedback + Feedforward

- The systems transfer function is then given as

$$
\begin{align*}
Y(s)=(& \left.\frac{C(s) G(s)}{1+C(s) G(s) H(s)}+\frac{F(s) G(s)}{1+C(s) G(s) H(s)}\right) R(s) \tag{C.8}\\
& +\frac{G(s)}{1+C(s) G(s) H(s)}\left(D(s)-D_{c}(s)\right)
\end{align*}
$$

Setpoint Controllers

- We will discuss three common controllers: P, PD and PID
- All controllers attempt to drive the error (between a desired trajectory and the actual trajectory) to zero
- The system $(\mathrm{G}(\mathrm{s}))$ can have any dynamics, but we will use the following system as an example

$$
\theta=\frac{U-D}{\left(J s^{2}+B s\right)}
$$

Block diagram with basic building blocks

Setpoint Controllers - System Model

- A generic robot model is given as

$$
J(q) \ddot{q}+C(q, \dot{q}) \dot{q}+B \dot{q}+g(q)=\tau
$$

- $J(q) \ddot{q} \quad-\quad$ Inertial forces
- $C(q, \dot{q}) \dot{q} \quad$ - \quad Coriolis and centrifugal forces
- $B \dot{q} \quad$ - Viscous friction (damping)
- $g(q) \quad$ - Gravitational forces
- τ
- Torque/Force from actuators

Setpoint Controllers - System Model

- In our example we assume that the following are treated as a disturbance D
- Coriolis and centrifigal forces
- Gravitational forces
- Coupling between joints $(J(q) \ddot{q} \rightarrow J \ddot{q}$, Ineria is no longer dependent on the joint variables)

$$
\begin{gathered}
J(q) \ddot{q}+C(q, \dot{q}) \dot{q}+B \dot{q}+g(q)=\tau \\
J \ddot{q}+B \dot{q}+D=\tau
\end{gathered}
$$

- Transforming into the frequency domain (with Laplace) gives (remember that θ is our joint variable q)

$$
J s^{2} \theta+B s \theta+D=\tau
$$

Setpoint Controllers - Motivation

- We will now look at different controllers for this system.
- We want the error between the reference (desired) value and the actual output value to go to zero
- The error is defined as $\mathrm{e}(t)=\theta^{d}(t)-\theta(t)$
- The controller use the error e(t) to calculate its output, also called control effort
- We denote the control effort as u (" U " in the block diagram above)
- We will look at the following controllers:

1. Proportional (P) controller
2. Proportional Derivative (PD) controller
3. Proportional Integral Derivative (PID) controller

University of Oslo

Proportional (P) Controller

- Control law:

$$
U(t)=K_{P} e(t)
$$

- Where $\mathrm{e}(t)=\theta^{d}(t)-\theta(t)$
- Taking the Laplace transformation gives:

$$
U(s)=K_{P} E(s)
$$

- Adding this controller to our system gives the following closed-loop system

UiO : Department of Technology Systems

University of Oslo

$$
J=1 \quad B=0.7 \quad D=0.5 \quad K p=1
$$

UiO : Department of Technology Systems

University of Oslo

Increasing the gain yields:

- Faster response
- Decreased steady state error
- Increased oscillations

$$
J=1 \quad B=0.7 \quad D=0.5 \quad K p=2.5
$$

Proportional Derivative (PD) Controller

- Control law:

$$
U(t)=K_{P} e(t)+K_{d} \dot{e}(t)
$$

- Where $\mathrm{e}(t)=\theta^{d}(t)-\theta(t)$
- Taking the Laplace transformation gives:

$$
U(s)=\left(K_{P}+K_{d} s\right) E(s)
$$

- Adding this controller to our system gives the following closed-loop system:

UiO : Department of Technology Systems

University of Oslo

We see that the Derivative term has a damping effect

$$
\mathrm{J}=1 \quad \mathrm{~B}=0.7 \quad \mathrm{D}=0.5 \quad \mathrm{Kp}=2.5 \quad \mathrm{Kd}=2
$$

Proportional Derivative (PD) Controller

- Recall that this system can be described by:

$$
\Theta(s)=\frac{U(s)-D(s)}{J s^{2}+B s}
$$

- Where, again, $U(s)$ is:

$$
U(s)=\left(K_{p}+s K_{d}\right)\left(\Theta^{d}(s)-\Theta(s)\right)
$$

- Combining these gives us:

$$
\Theta(s)=\frac{\left(K_{p}+s K_{d}\right)\left(\Theta^{d}(s)-\Theta(s)\right)-D(s)}{J s^{2}+B s}
$$

- Solving for Θ gives:

$$
\begin{aligned}
& \left(J s^{2}+B s\right) \Theta(s)+\left(K_{p}+s K_{d}\right) \Theta(s)=\left(K_{p}+s K_{d}\right) \Theta^{d}(s)-D(s) \\
& \Rightarrow\left(J s^{2}+\left(B+K_{d}\right) s+K_{p}\right) \Theta(s)=\left(K_{p}+s K_{d}\right) \Theta^{d}(s)-D(s) \\
& \Rightarrow \Theta(s)=\frac{\left(K_{p}+s K_{d}\right) \Theta^{d}(s)-D(s)}{J s^{2}+\left(B+K_{d}\right) s+K_{p}}
\end{aligned}
$$

Proportional Derivative (PD) Controller

- The denominator is the characteristic polynomial
- The roots of the characteristic polynomial determine the performance of the system

$$
s^{2}+\frac{\left(B+K_{d}\right)}{J} s+\frac{K_{p}}{J}=0
$$

- If we think of the closed-loop system as a damped second order system, this allows us to choose values of K_{p} and K_{d}

$$
s^{2}+2 \zeta \omega s+\omega^{2}=0
$$

- Thus K_{p} and K_{d} are:

$$
\begin{aligned}
& K_{p}=\omega^{2} J \\
& K_{d}=2 \varsigma \omega J-B
\end{aligned}
$$

- A natural choice is $\zeta=1$ (critically damped)
$>\zeta<1$-underdamped system
$>\zeta>1$ - overdamped system

Proportional Derivative (PD) Controller

- Limitations of the PD controller:
- for illustration, let our desired trajectory be a step input and our disturbance be a constant as well:

$$
\Theta^{d}(s)=\frac{C}{s}, D(s)=\frac{D}{s}
$$

- Plugging this into our system description gives:

$$
\Theta(s)=\frac{\left(K_{p}+s K_{d}\right) C-D}{s\left(J s^{2}+\left(B+K_{d}\right) s+K_{p}\right)}
$$

- For these conditions, what is the steady-state value of the displacement?

$$
\theta_{s s}=\lim _{s \rightarrow 0} \frac{s\left(K_{p}+s K_{d}\right) C-s D}{s\left(J s^{2}+\left(B+K_{d}\right) s+K_{p}\right)}=\lim _{s \rightarrow 0} \frac{\left(K_{p}+s K_{d}\right) C-D}{J s^{2}+\left(B+K_{d}\right) s+K_{p}}=\frac{K_{p} C-D}{K_{p}}=C-\frac{D}{K_{p}}
$$

- Thus the steady state error is $-D / K_{p}$
- Therefore to drive the error to zero in the presence of large disturbances, we need large gains... so we turn to another controller

$$
\Theta(s)=\frac{\left(K_{d} s^{2}+K_{p} s+K_{i}\right) \Theta^{d}(s)-s D(s)}{J s^{3}+\left(B+K_{d}\right) s^{2}+K_{\rho} s+K_{i}}
$$

Proportional Integral Derivative (PID) controller

- Control law:

$$
u(t)=K_{p} e(t)+K_{d} \dot{e}(t)+K_{i} \int e(t) d t
$$

- Taking the Laplace transformation gives:

$$
U(s)=\left(K_{p}+K_{d} s+\frac{K_{i}}{s}\right) E(s)
$$

- Adding this controller to our system gives the following closed-loop system:

The Ki term removes the steady state error

UiO : Department of Technology Systems

University of Oslo

To high Ki can cause overshoot, oscillations or instability

$$
\mathrm{J}=1 \quad \mathrm{~B}=0.7 \quad \mathrm{D}=0.5 \quad \mathrm{Kp}=2.5 \quad \mathrm{Kd}=2 \quad \mathrm{Ki}=0.5
$$

University of Oslo

Proportional Integral Derivative (PID) controller

- How to determine PID gains

1. Set $K_{i}=0$ and solve for K_{p} and K_{d}
2. Determine K_{i} to eliminate steady state error

- However, we need to be careful of the stability conditions

$$
K_{i}<\frac{\left(B+K_{d}\right) K_{p}}{J}
$$

- In general real world testing we always start with determining K_{p}
- There are general methods for finding controller gains that could be used (ziegler nichols methods etc.)

Proportional Integral Derivative (PID) controller

- Stability
- The closed-loop stability of these systems is determined by the roots of the characteristic polynomial
- If all roots (potentially complex) are in the 'left-half' plane, our system is stable
- for any bounded input and disturbance

- A description of how the roots of the characteristic equation change (as a function of controller gains) is very valuable
- Called the root locus (see example slide 36)

University of Oslo

Setpoint Controllers - Summary

- Proportional
- A pure proportional controller will have a steady-state error
- High gain (Kp) will produce a fast system
- High gain may cause oscillations and may make the system unstable
- High gain reduces the steady-state error
- Integral
- Removes steady-state error
- Increasing Ki accelerates the controller
- High Ki may give oscillations
- Increasing Ki will increase the settling time
- Derivative
- Larger Kd decreases oscillations
- Improves stability for low values of Kd
- May be highly sensitive to noise if one takes the derivative of a noisy error
- High noise leads to instability

Example - Motor dynamics

- DC motors are ubiquitous in robotics applications
- Here, we develop a transfer function that describes the relationship between the input voltage and the output angular displacement
- First, a physical description of the most common motor: permanent magnet...
torque on the rotor:

$$
\tau_{m}=K_{1} \phi i_{a}
$$

Physical instantiation

Motor dynamics

－When a conductor moves in a magnetic field，a voltage is generated
－Called back EMF：

$$
V_{b}=K_{2} \phi \omega_{m}
$$

－Where ω_{m} is the rotor angular velocity

Motor dynamics

- Since this is a permanent magnet motor, the magnetic flux is constant, we can write:
- Similarly:

$$
\tau_{m}=K_{1} \phi i_{a}=K_{m} i_{a} \quad \text { torque constant }
$$

$$
V_{b}=K_{2} \phi \omega_{m}=K_{b} \frac{d \theta_{m}}{d t} \text { back EMF constant }
$$

- K_{m} and K_{b} are numerically equivalent, thus there is one constant needed to characterize a motor

Motor dynamics

- This constant is determined from torque-speed curves
- Remember, torque and displacement are work conjugates

- $\quad \tau_{0}$ is the blocked torque

Single link／joint dynamics

－Now，lets take our motor and connect it to a link
－Between the motor and link there is a gear such that：$\theta_{m}=r \theta_{L}$
－Lump the actuator and gear inertias：$J_{m}=J_{a}+J_{g}$
－Now we can write the dynamics of this mechanical system：

$$
J_{m} \frac{d^{2} \theta_{m}}{d t^{2}}+B_{m} \frac{d \theta_{m}}{d t}=\tau_{m}-\frac{\tau_{L}}{r}=K_{m} i_{a}-\frac{\tau_{L}}{r}
$$

ES159／259

Motor dynamics

- Now we have the ODEs describing this system in both the electrical and mechanical domains:

$$
\begin{gathered}
L \frac{d i_{a}}{d t}+R i_{a}=V-K_{b} \frac{d \theta_{m}}{d t} \\
J_{m} \frac{d^{2} \theta_{m}}{d t^{2}}+B_{m} \frac{d \theta_{m}}{d t}=K_{m} i_{a}-\frac{\tau_{L}}{r}
\end{gathered}
$$

- In the Laplace domain:

$$
\begin{array}{r}
(L s+R) I_{a}(s)=V(s)-K_{b} s \Theta_{m}(s) \\
\left(J_{m} s^{2}+B_{m} s\right) \Theta_{m}(s)=K_{m} I_{a}(s)-\frac{\tau_{L}(s)}{r}
\end{array}
$$

Motor dynamics

－These two can be combined to define，for example，the input－output relationship for the input voltage，load torque，and output displacement：

Motor dynamics

- Remember, we want to express the system as a transfer function from the input to the output angular displacement
- But we have two potential inputs: the load torque and the armature voltage
- First, assume $\tau_{L}=0$ and solve for $\Theta_{m}(s)$:

$$
\begin{gathered}
\frac{\left(J_{m} s^{2}+B_{m} s\right) \Theta_{m}(s)}{K_{m}}=I_{a}(s) \longrightarrow \frac{(L s+R)\left(J_{m} s^{2}+B_{m} s\right)}{K_{m}} \Theta_{m}(s)=V(s)-K_{b} s \Theta_{m}(s) \\
\longrightarrow \frac{\Theta_{m}(s)}{V(s)}=\frac{K_{m}}{s\left[(L s+R)\left(J_{m} s+B_{m}\right)+K_{b} K_{m}\right]}
\end{gathered}
$$

Motor dynamics

- Now consider that $V(s)=0$ and solve for $\Theta_{m}(s)$:

$$
\begin{aligned}
I_{a}(s) & =\frac{-K_{b} s \Theta_{m}(s)}{L s+R} \longrightarrow\left(J_{m} s^{2}+B_{m} s\right) \Theta_{m}(s)=\frac{-K_{m} K_{b} s \Theta_{m}(s)}{L s+R}-\frac{\tau_{L}(s)}{r} \\
& \longrightarrow \frac{\Theta_{m}(s)}{\tau_{L}(s)}=\frac{-(L s+R) / r}{s\left[(L s+R)\left(U_{m} s+B_{m}\right)+K_{b} K_{m}\right]}
\end{aligned}
$$

- Note that this is a function of the gear ratio
- The larger the gear ratio, the less effect external torques have on the angular displacement

Motor dynamics

－In this system there are two＇time constants＇
－Electrical：L / R
－Mechanical：J_{m} / B_{m}
－For intuitively obvious reasons，the electrical time constant is assumed to be small compared to the mechanical time constant
－Thus，ignoring electrical time constant will lead to a simpler version of the previous equations：

$$
\begin{aligned}
\frac{\Theta_{m}(s)}{V(s)} & =\frac{K_{m} / R}{s\left[J_{m} s+B_{m}+K_{b} K_{m} / R\right]} \\
\frac{\Theta_{m}(s)}{\tau_{L}(s)} & =\frac{-1 / r}{s\left[J_{m} s+B_{m}+K_{b} K_{m} / R\right]}
\end{aligned}
$$

Motor dynamics

- Rewriting these in the time domain gives:

$$
\begin{aligned}
& \frac{\Theta_{m}(s)}{V(s)}=\frac{K_{m} / R}{s\left[J_{m} s+B_{m}+K_{b} K_{m} / R\right]} \longrightarrow J_{m} \ddot{\theta}_{m}(t)+\left(B_{m}+K_{b} K_{m} / R\right) \dot{\theta}_{m}(t)=\left(K_{m} / R\right) V(t) \\
& \frac{\Theta_{m}(s)}{\tau_{L}(s)}=\frac{-1 / r}{s\left[J_{m} s+B_{m}+K_{b} K_{m} / R\right]} \longrightarrow J_{m} \ddot{\theta}_{m}(t)+\left(B_{m}+K_{b} K_{m} / R\right) \dot{\theta}_{m}(t)=-(1 / R) \tau_{L}(t)
\end{aligned}
$$

- By superposition of the solutions of these two linear 2 ${ }^{\text {nd }}$ order ODEs:

$$
\underbrace{J_{m} \ddot{\theta}_{m}(t)+\underbrace{\left(B_{m}+K_{b} K_{m} / R\right)}_{B}) \dot{\theta}_{m}(t)=\underbrace{\left(K_{m} / R\right) V(t)}_{u(t)}-\underbrace{(1 / R) \tau_{L}(t)}_{d(t)}) .}_{J}
$$

Motor dynamics

- Therefore, we can write the dynamics of a DC motor attached to a load as:

$$
J \ddot{\theta}(t)+B \dot{\theta}(t)=u(t)-d(t)
$$

- Note that $u(t)$ is the input and $d(t)$ is the disturbance (e.g. the dynamic coupling from motion of other links)
- To represent this as a transfer function, take the Laplace transform:

