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Lecture overview

• General introduction to control theory

– Motivation

• Self regulating systems (pendulum at equilibrium)

• Unstable systems (car speed)

– Open and closed loop systems

• Open loop (washing machine)

– Feed forward (car speed – incline as disturbance model)

• Closed loop

– Feedback (cruise control)

– Stability 

• Stable systems 

• Unstable systems *
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https://www.youtube.com/watch?v=b9eDwB9bSqE
https://youtu.be/L-Q6xg2KbCA
https://youtu.be/UdmlPu33Iew?t=23


Definition input/output stability

• Asymptotically stable if:

– 𝑦 → 0 when 𝑡 → ∞ and u has a finite duration and amplitude

• Marginally stable if:

– 𝑦 < ∞ for all 𝑡 ≥ 0 and u has a finite duration and amplitude

• Unstable otherwise
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Robot Control

• We want to control the joint positions (configuration) of a 

robot 

– Therefore we need to figure out how we can determine the 

motor/actuator inputs so as to command the robot to a desired 

configuration

• In general, the input (voltage/current) does not create 

instantaneous motion to a desired configuration because of 

the robots dynamical properties

• There are also other real world elements that affect the 

robots motion like backlash (clearance between gear tooths

- causes hysteresis) and the properties of the motor/actuator
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Robot Control

• We shall focus on single input single output systems (SISO) 

meaning that we only look at each joint by itself

• We therefore assume that each joint is affected only by itself

• This means that the contributions from the other joints are

treated as a disturbance

• Before we can start to control a joint, we need to model the

joint and look at its properties.
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Robot control - Modelling

• From dynamics we have the ordinary differential equation 

(ODE) for the robot. We have n non-linear equations as a 

result of n joint variables, all expressed in the time domain.

• These n equations often depends on each other

• We want to transform these equations into n linear, 

independent equations

• We do this by treating the non-linear effects and the 

dependence of other joints as disturbance
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Example – Robot modeling

The dynamic equations are given as

We shall now give a linearization of the first equation



Robot control - Modeling

• We now have a set of independent linear equations

• We want to analyse the properties of these systems

• Laplace transform can be used to transform the equations

into the frequency domain

– This transforms the equations from a ordinary differential equations

into a linear equations, which easier to solve

– We can analyse important system properties in the frequency

domain, such as stability and step response

• Block diagrams can be used to visualize the equations for 

the system and possible feedback loops
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Laplace transform
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• The Laplace transform is defined as follows:

• For example, Laplace transform of a derivative:

– Integrating by parts:
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• Similarly, Laplace transform of a second derivative:

• Thus, if we have a generic 2nd order system described by the following ODE:

• And we want to get a transfer function representation of the system, take the 

Laplace transform of both sides:
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Laplace transform
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• Continuing:

• The transient response is the solution of the above ODE if the forcing function 

F(t) = 0

• The steady state response is the solution of the above equation if the initial 

conditions are zero

• This yields the equation

           002 xcmsxmsFsxkbsms  



Common Laplace functions

13



11. april 2011 14Ny Powerpoint mal 2011



15



Review of the Laplace transform
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• Properties of the Laplace transform

– Takes an ODE to a algebraic equation

– Differentiation in the time domain is multiplication by s in the 

Laplace domain

– Integration in the time domain is multiplication by 1/s in the 

Laplace domain

– Considers initial conditions

• i.e. transient and steady-state response

– The Laplace transform is a linear operator



Transfer functions

• When all initial conditions of a Laplace transform are zero, 

the response Y(s) of a linear system is given by its input 

X(s) and its transfer function H(s)

𝑌 𝑠 = 𝐻 𝑠 𝑋(𝑠)

𝑌(𝑠)

𝑋(𝑠)
= 𝐻(𝑠)

• The denominator (X(s)) of the transfer function is called the

characteristic polynomial
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Example cont. – Robot modeling

We can now derive the transfer functions for the robot in the frequency domain



Example – Mass spring damper system
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Block diagrams

• A block diagram visalizes one or more equations

• Makes it easier to see feedback and feed forward loops
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Block diagram symbols

21



Example cont. – Robot modeling

Drawing a block diagram 

The transfer function as given as:

𝐽𝑠2𝜃1 − 𝐺𝜃1 + 𝐷 = 𝜏1



Drawing a block diagram of a mass spring damper 

system

• 𝑥𝑠2 =
1

𝑚
(𝑢 − 𝑓𝑥𝑠 − 𝑘𝑥)
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Manipulation of block diagrams

11. april 2011
24Ny Powerpoint mal 2011



Manipulation of block diagrams
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Manipulation of block diagrams
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26Ny Powerpoint mal 2011



Manipulation of block diagrams
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Prove on blackboard



Zeros and poles of the transfer functions

• For rational transferfunctions we denote the roots of the

nominator zeros and roots of the denominator poles

• The poles gives important characteristics about the transfer 

function

ℎ 𝑠 =
𝜌𝑝𝑠

𝑝 +⋯+ 𝜌1𝑠
1 + 𝜌0

𝑠𝑛 + 𝛼𝑛−1 𝑠
𝑛−1 + ⋯+ 𝛼1 𝑠 + 𝛼0

ℎ 𝑠 =
𝜌𝑝 𝑠 − 𝑣1 ⋯(𝑠 − 𝑣𝑝)

(𝑠 − 𝜆1) ⋯ (𝑠 − 𝜆𝑛)

• We call the polynomial in the denominator the characteristic

polynomial
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Examples – Finding roots and zeros

• Example 1: Given transfer function

• Example 2: Mass-spring-damper system
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Example cases

• Three cases depending on the poles

• Case I: Poles are real and distinct

– Over-damped system

• Case II: Poles are real and equal

– Critically damped system

• Case III: Poles are complex conjugates

– Under-damped system

30



Time responses
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Effect of changes in poles
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Common transfer functions and their poles and 

step respones
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Root locus plots

• Instead of using constant values in the transfer function we

now assume that we can vary one (or more) parameters

• Changing this parameter will move the poles and zeros in 

the complex plane

• The paths of zeros and poles in the complex plane as a 

function of changed controller parameters are called root

locus plots

• We can investigate the stability of our system by looking at 

how these poles moves based on the control parameters

35



Example - Root Locus Plot

Drawing on blackboard



Stability – Frequency domain

• Find the poles (𝜆𝑖) of the transfer function

• If 𝑅𝑒(𝜆𝑖) < 0 for all 𝜆𝑖 in H(s) the system is asymptotically 

stable

• If one or more poles has 𝑅𝑒(𝜆𝑖) = 0, but they are not in the 

same point the system is marginally stable

• If on or more poles has 𝑅𝑒(𝜆𝑖) > 0 the system is unstable
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Example - Stability

Drawing on blackboard



Feedback systems

• G(s) – System Model

• C(s) – Controller

• D(s) – Disturbance

• H(s) – Transducer (sensor model)

• R(s) – Reference Input

• Y(s) – Output Variable
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Feedback systems
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Feedback + Feedforward

• We want to regulate the system modeling error, therefore we add the feed forward 

parts F(s) and Dc(s), where Dc(s) is a model of the systems disturbances.

• Assuming we can model the system accurately a convenient choice is F(s) = 1/G(s)

• This decreases the systems time response (feedback systems can be slower)
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Feedback + Feedforward

• The systems transfer function is then given as
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Setpoint Controllers

• We will discuss three common controllers: P, PD and PID

– All controllers attempt to drive the error (between a desired trajectory 

and the actual trajectory) to zero

• The system (G(s)) can have any dynamics, but we will use the 

following system as an example

Compact block diagram                               Block diagram with basic building blocks 

𝜃 =
𝑈 − 𝐷

𝐽𝑠2 + 𝐵𝑠



Setpoint Controllers – System Model

• A generic robot model is given as

• 𝐽 𝑞 ሷ𝑞 - Inertial forces

• 𝐶 𝑞, ሶ𝑞 ሶ𝑞 - Coriolis and centrifugal forces

• 𝐵 ሶ𝑞 - Viscous friction (damping)

• 𝑔 𝑞 - Gravitational forces

• 𝜏 - Torque/Force from actuators
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𝐽 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐵 ሶ𝑞 + 𝑔 𝑞 = 𝜏



Setpoint Controllers – System Model

• In our example we assume that the following are treated as 

a disturbance D

– Coriolis and centrifigal forces

– Gravitational forces

– Coupling between joints (𝐽 𝑞 ሷ𝑞 → 𝐽 ሷ𝑞, Ineria is no longer dependent 

on the joint variables)

• Transforming into the frequency domain (with Laplace) gives
(remember that 𝜃 is our joint variable 𝑞)
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𝐽 𝑞 ሷ𝑞 + 𝐶 𝑞, ሶ𝑞 ሶ𝑞 + 𝐵 ሶ𝑞 + 𝑔 𝑞 = 𝜏

𝐽 ሷ𝑞 + 𝐵 ሶ𝑞 + 𝐷 = 𝜏

𝐽𝑠2𝜃 + 𝐵𝑠𝜃 + 𝐷 = 𝜏



• We will now look at different controllers for this system.

• We want the error between the reference (desired) value and the actual 

output value to go to zero

• The error is defined as e 𝑡 = 𝜃𝑑 𝑡 − 𝜃(𝑡)

• The controller use the error e 𝑡 to calculate its output, also called

control effort

• We denote the control effort as u (“U” in the block diagram above)

• We will look at the following controllers:

1. Proportional (P) controller

2. Proportional Derivative (PD) controller

3. Proportional Integral Derivative (PID) controller

Setpoint Controllers – Motivation



• Control law: 𝑈 𝑡 = 𝐾𝑃𝑒 𝑡

• Where e 𝑡 = 𝜃𝑑 𝑡 − 𝜃(𝑡)

• Taking the Laplace transformation gives:

𝑈 𝑠 = 𝐾𝑃𝐸 𝑠

• Adding this controller to our system gives the following closed-loop system

Proportional (P) Controller



48J = 1 B = 0.7 D = 0.5 Kp = 1
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Increasing the gain yields:

- Faster response

- Decreased steady state error

- Increased oscillations

J = 1 B = 0.7 D = 0.5 Kp = 2.5



Proportional Derivative (PD) Controller

• Control law: 𝑈 𝑡 = 𝐾𝑃𝑒 𝑡 + 𝐾𝑑 ሶ𝑒(𝑡)

• Where e 𝑡 = 𝜃𝑑 𝑡 − 𝜃 𝑡

• Taking the Laplace transformation gives:

𝑈 𝑠 = (𝐾𝑃+𝐾𝑑𝑠)𝐸 𝑠

• Adding this controller to our system gives the following closed-loop system:
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We see that the Derivative 

term has a damping effect

J = 1 B = 0.7 D = 0.5 Kp = 2.5 Kd=2



Proportional Derivative (PD) Controller

• Recall that this system can be described by:

• Where, again, U(s) is:

• Combining these gives us:

• Solving for Q gives:
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Proportional Derivative (PD) Controller

• The denominator is the characteristic polynomial

• The roots of the characteristic polynomial determine the performance of 
the system 

• If we think of the closed-loop system as a damped second order system, 
this allows us to choose values of Kp and Kd

• Thus Kp and Kd are:

• A natural choice is z = 1 (critically damped)
➢ z < 1 – underdamped system

➢ z > 1 – overdamped system
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Proportional Derivative (PD) Controller

• Limitations of the PD controller:

– for illustration, let our desired trajectory be a step input and our 

disturbance be a constant as well:

– Plugging this into our system description gives:

– For these conditions, what is the steady-state value of the 

displacement?

– Thus the steady state error is –D/Kp

– Therefore to drive the error to zero in the presence of large 

disturbances, we need large gains… so we turn to another controller
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Proportional Integral Derivative (PID) controller
• Control law:

• Taking the Laplace transformation gives:

• Adding this controller to our system gives the following closed-loop system:
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The Ki term removes the steady 

state error

J = 1 B = 0.7 D = 0.5 Kp = 2.5 Kd=2 Ki = 0.133



57J = 1 B = 0.7 D = 0.5 Kp = 2.5 Kd=2 Ki = 0.5

To high Ki can cause overshoot, 

oscillations or instability



Proportional Integral Derivative (PID) controller

• How to determine PID gains

1. Set Ki = 0 and solve for Kp and Kd

2. Determine Ki to eliminate steady state error

• However, we need to be careful of the stability conditions

– In general real world testing we always start with determining Kp

– There are general methods for finding controller gains that could 

be used (ziegler nichols methods etc.)
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Proportional Integral Derivative (PID) controller

• Stability

– The closed-loop stability of these systems is determined by the 

roots of the characteristic polynomial

– If all roots (potentially complex) are in 

the ‘left-half’ plane, our system is stable

• for any bounded input and disturbance

– A description of how the roots of the characteristic equation 

change (as a function of controller gains) is very valuable

• Called the root locus (see example slide 36)



Setpoint Controllers – Summary

• Proportional

– A pure proportional controller will have a steady-state error

– High gain (Kp) will produce a fast system

– High gain may cause oscillations and may make the system unstable

– High gain reduces the steady-state error

• Integral

– Removes steady-state error

– Increasing Ki accelerates the controller

– High Ki may give oscillations

– Increasing Ki will increase the settling time

• Derivative

– Larger Kd decreases oscillations

– Improves stability for low values of Kd

– May be highly sensitive to noise if one takes the derivative of a noisy error

– High noise leads to instability
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Example - Motor dynamics

• DC motors are ubiquitous in robotics applications

• Here, we develop a transfer function that describes the relationship 

between the input voltage and the output angular displacement

• First, a physical description of the most common motor: permanent 

magnet…

am iK  1

torque on the rotor:
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Physical instantiation
stator

rotor

(armature)

commutator
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Motor dynamics

• When a conductor moves in a magnetic field, a voltage is generated

– Called back EMF:

– Where m is the rotor angular velocity

mb KV 2

armature inductance

armature resistance

ba
a VVRi

dt

di
L 
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Motor dynamics

• Since this is a permanent magnet motor, the magnetic flux is constant, 

we can write:

• Similarly: 

• Km and Kb are numerically equivalent, thus there is one constant 

needed to characterize a motor

amam iKiK   1

dt

d
KKV m

bmb


  2

torque constant

back EMF constant
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Motor dynamics

• This constant is determined from torque-speed curves

– Remember, torque and displacement are work conjugates

– 0 is the blocked torque
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Single link/joint dynamics

• Now, lets take our motor and connect it to a link

• Between the motor and link there is a gear such that:

• Lump the actuator and gear inertias:

• Now we can write the dynamics of this mechanical system:
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Motor dynamics

• Now we have the ODEs describing this system in both the electrical 

and mechanical domains:

• In the Laplace domain:
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Motor dynamics

• These two can be combined to define, for example, the input-output 

relationship for the input voltage, load torque, and output displacement:
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Motor dynamics

• Remember, we want to express the system as a transfer function from 

the input to the output angular displacement

– But we have two potential inputs:  the load torque and the armature voltage

– First, assume L = 0 and solve for Qm(s):
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Motor dynamics

• Now consider that V(s) = 0 and solve for Qm(s):

• Note that this is a function of the gear ratio

– The larger the gear ratio, the less effect external torques have on the 

angular displacement

 
 

 
   mbmmL

m

KKBsJRLss

rRLs

s

s






/



Q

 
 

RLs

ssK
sI mb

a





Q    
   

r

s

RLs

ssKK
ssBsJ Lmbm

mmm

Q
Q 




2



ES159/259

Motor dynamics

• In this system there are two ‘time constants’

– Electrical: L/R

– Mechanical: Jm/Bm

• For intuitively obvious reasons, the electrical time constant is assumed 

to be small compared to the mechanical time constant

– Thus, ignoring electrical time constant will lead to a simpler version of the 

previous equations:
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Motor dynamics

• Rewriting these in the time domain gives:

• By superposition of the solutions of these two linear 2nd order ODEs:

 
   RKKBsJs
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Q          tVRKtRKKBtJ mmmbmmm //   

         tRtRKKBtJ Lmmbmmm  /1/  

             tRtVRKtRKKBtJ Lmmmbmmm  /1//  

J B  tu  td
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Motor dynamics

• Therefore, we can write the dynamics of a DC motor attached to a load 

as:

– Note that u(t) is the input and d(t) is the disturbance (e.g. the dynamic 

coupling from motion of other links)

• To represent this as a transfer function, take the Laplace transform:

       tdtutBtJ   

       sDsUsBsJs  Q2


