
INF3490 exercise answers - week 1 2014

Problem 1

a) f(x) to the left, and f’(x) to the right.

b) Code:

1 s t epS i z e = 0.01
p r e c i s i o n = 0.0001

3

de f f ( x ) :
5 r e turn −x∗∗4 + 2∗( x∗∗3) + 2∗( x∗∗2) − x

7 de f df ( x ) :
r e turn −4∗(x∗∗3) + 6∗( x∗∗2) + 4∗x − 1

9

de f grad ientAscent ( f , df , s t a r t , step , prec ) :
11

xNew = s t a r t
13 xOld = s t a r t + 1 #ju s t add something to s t a r t the while−loop

whi l e ( abs (xNew − xOld ) > prec ) :
15 xOld = xNew

xNew = xOld + step ∗df ( xOld )
17

pr in t ’ Local max found at : ’ , xNew , ’ , with value : ’ , f (xNew)
19

#Test ing a few s t a r t po in t s
21 grad ientAscent ( f , df , 3 , s t epS i ze , p r e c i s i o n )

grad ientAscent ( f , df , −1, s t epS i ze , p r e c i s i o n )
23 grad ientAscent ( f , df , 0 . 20 , s t epS i ze , p r e c i s i o n )

grad ientAscent ( f , df , 2 , s t epS i ze , p r e c i s i o n )

ex1gradient.py

The starting point will affect the algorithm’s performance. If the starting point is
placed where the graph is ascending or descending to/from the local maximum at
x ≈ −0.65, the algorithm will end up on the local maximum.
Because f ′(x) is 0 in the local minimum at x ≈ −0.2, the algorithm may not find
a local maximum if our starting point is too close to the local minimum.
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c) Code:

s t epS i z e = 0 .5
2

de f f ( x ) :
4 r e turn −x∗∗4 + 2∗( x∗∗3) + 2∗( x∗∗2) − x

6 de f df ( x ) :
r e turn −4∗(x∗∗3) + 6∗( x∗∗2) + 4∗x − 1

8

de f exhaust iveSearch ( f , df , s t a r t , stop , s tep ) :
10 x = s t a r t ;

max = s t a r t ;
12 whi le x < stop :

i f ( f ( x ) > f (max) ) :
14 max = x

x = x + step
16

pr in t ’Max found at : ’ , max , ’ , with value : ’ , f (max)
18

#Running the a lgor i thm
20 exhaust iveSearch ( f , df , −2, 3 , s t epS i z e )

ex1exhaustive.py

When running the exhaustive search with step size 0.5 we find the global maximum
at x = 2.0 and value 6.0. Try performing the search with a smaller step size to see
if the result gets more accurate.

d) A greedy algorithm would check both directions and choose the best one, while
a hill climber would choose one direction randomly and move if an improvement is
found. The greedy algorithm would always find the global optimum when starting
at x = 0, while the hill climber would have a 50-50 chance of reaching either the
global or the local optimum from that point.

e Exhaustive search is the most efficient in this case. This is because the number
if iterations needed to get from one end of the search space to the other is large in
relative to the size of the search space. Simulated annealing needs to be able to jump
pretty quickly back and forth in order to be efficient. In a search space of higher
dimensionality simulated annealing would most likely outperform an exhaustive
search.

f) Perhaps the easiest thing to do would be to add a random reset after a certain
number of iterations. In that way the algorithm would over time be able to find
several optima. Hill climbing, which has a certain randomness to it, could also
benefit from back-tracking: When reaching some optima, it may back-track to
some point it has visited earlier, and try a different direction from there.

Problem 2

a) The (1 + 4) ES would generate four candidate solutions from the same origin
before potentially changing parent instead of one. This would make for a more
informed choice in which direction to move in the search space. The higher λ is,
the more information is gathered about the neighborhood of the current solution.
Recall that greedy search checks out all neighbors before making a move, while hill
climbing on makes one. So we would expect the (1 + λ) ES to behave increasingly
like a greedy search as we increase λ.
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b) An adaptive search strategy will, in most cases, increase the convergence rate
of the search especially in the late stages. However, it does not by itself help avoid
getting stuck in local optima.

c) When strategy parameters are mutated first, the change in strategy has imme-
diate effect on the new solution that is created. Thus the fitness of this solution
also indirectly rates the strategy to some degree. If the strategy parameters are
mutated after the solution parameters this link is weaker, and we would expect the
strategies to adapt slower, if at all.

Problem 3

a)
import random

2 s ta r tPopu la t i on = [ 1 . 0 , 2 . 0 , 3 . 0 , 4 . 0 ]

4 de f g (x ) :
r e turn x

6

de f i r ( lop , noo ) :
8 #noo number o f o f f s p r i n g

#lop = L i s t o f populat ion
10 l ength = len ( lop )

f o r i in range (0 , noo ) :
12 c=random . randint (0 , length −1)

d=random . rand int (0 , length −1)
14 l op . append ( ( lop [ c ]+ lop [ d ] ) /2)

p r i n t lop
16 r e turn lop

18 de f os ( lop , numberOfParents ) : #o f f s p r i n g s e l e c t i o n
newGeneration =[ ]

20 f o r i in range (0 , numberOfParents ) :
mx = max( lop )

22 newGeneration . append (mx)
lop . remove (mx)

24 pr in t newGeneration
re turn newGeneration

26

de f es ( populat ion , numberOfparents , numberOfoffspring , i t e r a t i o n s ) :
28 f o r i in range (0 , i t e r a t i o n s ) :

populat ion = i r ( populat ion , numberOfof fspr ing )
30 populat ion = os ( populat ion , numberOfParents )

p r i n t populat ion
32 pr in t ’Max found at : ’ , max( populat ion )

34 # Running the a lgor i thm
es ( s ta r tPopu lat ion , 4 , 8 , 3)

inf3490ex1P3a.py

b) Typical population development:
{4, 3, 2, 1} → {4, 3.5, 3.5, 3} → {4, 3.75, 3.75, 3.75} → {4, 3.875, 3.75, 3.75}
The best solution will always survive as an offspring, so it just needs to be

created at least once in the first place. If parents are drawn without replacement
the probability is zero - 4 can only be one of the parents. Otherwise the probability
of any one offspring having 4 as both parents is 1

4 ·
1
4 = 1

16 . The chance of none of

the eight offspring having 4 as both parents is
(
15
16

)8 ≈ 0.597 and so the probability
of the solution surviving is 1− 0.597 = 0.403.
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c) Typical population development:
{4, 3, 2, 1} → {4, 3, 2, 3} → {4, 4, 3, 2} → {4, 4, 4, 3}
Although the mechanisms are quite different both algorithms move towards a

population of only 4’s (or, at least some close approximate of 4), as expected. We
can see that while the ES is able to generate a number of new variants of the original
solutions through recombination, the EP is completely dependent on its mutation
operator to create anything new.

1 import random
sta r tPopu la t i on = [ 4 , 2 , 3 , 1 ]

3

de f g (x ) :
5 r e turn x

7 de f mutation ( parents ) :
l ength = len ( parents )

9 f o r i in range (0 , l ength ) :
c=random . randint (1 , 4 )

11 parents . append ( c )
p r i n t parents

13 r e turn parents

15 de f s s ( cur r ent ) : #su r v i v a l s e l e c t i o n
newGeneration =[ ]

17 l ength = len ( cur rent )
f o r i in range (0 , l ength /2) :

19 c=cur rent [ random . rand int (0 , length −1) ]
d=cur rent [ random . rand int (0 , length −1) ]

21 i f c > d :
newGeneration . append ( c )

23 e l s e :
newGeneration . append (d)

25 pr in t newGeneration
re turn newGeneration

27

de f ep ( populat ion , i t e r a t i o n s ) :
29 f o r i in range (0 , i t e r a t i o n s ) :

populat ion = mutation ( populat ion )
31 populat ion = s s ( populat ion )

mx = max( populat ion )
33 pr in t ’Max found at : ’ , mx

return max
35

# Running the a lgor i thm
37 ep ( s tar tPopu la t ion , 3)

INF3490ex1p3c.py
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