INF3490 exercise answers - week 22014

Problem 1

- Binary representation
- Bit-flip mutation
- N-point and uniform crossover
- Integer representation
- Random reset and creep mutation
- N-point and uniform crossover
- (Cardinal/enumerated/symbolic representation)
- Random reset mutation
- N-point and uniform crossover
- Real-valued/continuous representation
- Uniform and Gaussian (normally distributed) mutation
- N-point, uniform (discrete) and arithmetic (intermediate, single, whole, etc.) crossover
- Permutation representation
- Swap, insert, scramble and invert mutation
- Partially mapped, order, cycle and edge crossover
- Tree representation
- Mutation by random replacement
- Subtree swap mutation

Problem 2

The probability of zero bit-flips is $\left(\frac{3}{4}\right)^{4}=\frac{81}{256} \approx 0.316$. There are 4 ways to get one bit flip, each of which has a probability $\frac{1}{4}\left(\frac{3}{4}\right)^{3}$, so the probability of exactly one bit-flip is $\frac{4}{4}\left(\frac{3}{4}\right)^{3}=\frac{27}{64} \approx 0.422$. Then the probability of getting more than one bit-flip is $1-\frac{81}{256}-\frac{27}{64}=\frac{67}{256} \approx 0.262$.

Problem 3

Parents(2, 4, 7, 1, 3, 6, 8, 9, 5) and (5, 9, 8, 6, 2, 4, 1, 3, 7):

- Partially mapped crossover: $(5,9,1,4,3,6,8,2,7)$ and $(3,6,7,8,2,4,1,9,5)$
- Order crossover: $(9,2,4,1,3,6,8,7,5)$ and (7, $1,3,6,2,4,1,9,5)$
- Cycle crossover: $(2,4,7,1,3,6,8,9,5)$ and (5, 9, 8, 6, 2, 4, 1, 3, 7)

