
INF3490 exercise answers - week 5 2014

Problem 1
Backpropagation is entirely dependent on the output of the neurons not being hard
zeroes and ones, so that it can make gradual changes to them. From a technical
view, it is dependent on the activation function yi = f (ai) being differentiable, with
a derivative f ′ (ai) that can be written as a function of the neuron output yi (you
could perhaps write it as g′ (yi) = f ′

(
f−1 (yi)

)
), in order to estimate how much the

weighted sum of inputs ai has to change in order to achieve a change in yi that is
proportional to the derivative of the error yi − ti.

Problem 2
You need three layers (one output layer plus two hidden layers) in order to create
any decision boundary. Take the two-dimensional case: one layer gives you straight
lines, and two layers gives you any shape that is in between any number of lines,
so any convex shape - which includes all triangles. By combining enough triangles
(remember, we haven’t put any limits on how many neurons we have in each layer)
we can approximate any shape. Luckily, this holds for any number of dimensions,
so three layers is enough no matter how many input nodes we have.

Problem 3
First off, there has been some confusion about exactly what cross-validation means.
The lecture slides and the book describes it as something involving three sets: a
training set, a validation set and a test set, and is described as something you do in
order to implement early stopping. Contrary to this, the cross-validation that you
were to do in the second mandatory exercise only involves a training set and a test
set, and isn’t used for early stopping at all!

The first definition is actually just an extension to cross-validation that is used
in order to do early stopping properly. In both cases we split up our data and use
parts of it for training data while the rest remains “unseen” by the training, and is
used for validating the training. To better avoid bias, this data then has to be split
into separate sets for evaluating when to stop training (the “validation set” in the
lectures) and for evaluating final performance (the “test set” in the lectures).

In general then, a validation set is used in order to evaluate the performance of
the trained classifier on unseen data. In accordance with the terminology used in
the book, it would also be valid to answer that the validation set is used to test for
when it is right to stop early.

1



The three validation methods work as follows:

• Simple cross-validation: the data is simply split into two (three) equally large
parts, with one part used for training, (one part used for determining early
stopping) and one part used for final evaluation.

• k-fold cross-validation: the data is separated into k folds. The training is then
done k times, each time using a different fold as the test data (or with early
stopping: one fold for validation during training and one fold for the final
evaluation) and the rest as training data.

• Leave one out cross-validation: in turn, leave out each single data sample and
train on the rest, testing on the single sample you left out, and calculate the
success rate. (kind of an extreme case of k-fold cross-validation).

Problem 4
See the the file http://www.uio.no/studier/emner/matnat/ifi/INF3490/h14/
exercises/bool_mlp.py

Problem 5
In general, the backpropagation deltas are defined as δk = (yk − tk) g

′ (yk) where
g′ (yk) is the derivative of the activation function as a function of the activa-
tion output as mentioned in the previous exercise. In this case we have δk =
(yk − tk) yk (1− yk), so we must have g′ (yk) = yk (1− yk). Then we would need to
either clever at math or hope that this is a common activation function so that we
can find it in some text about neural networks. In fact, this g′ (yk) corresponds to
the single most common activation function

f (x) =
1

1 + e−x

The derivation goes like this

f ′ (x) =
e−x

(1 + e−x)
2 =

(1 + e−x)− 1

(1 + e−x) (1 + e−x)
=

(
1− 1

1 + e−x

)
1

1 + e−x
= (1− f (x)) f (x)

Problem 6
There are many ways of solving this, but the simplest way to arrange the input is
to take pairs of letters as input, and assume that some external mechanism will feed
us with candidate letter-pairs.

The next question is then how to encode the letter-pairs. Neural networks takes
their input as a fixed number of real-valued scalars. So we need an encoding in that
form. But, there is no clear and easy way to put the relevant set of letters on a
one-dimensional scale, or even a multidimensional scale.

What we can do is to use binary inputs: we encode each letter with one input
for each possible value. In the biological analogy of neural networks this would
correspond to having a specialized neuron in our brain that detects a single letter.
E.g. in the English alphabet we would get 26 inputs per letter. Then we want two
letters as input, so we would get a total of 52 inputs to our neural net.

Finally, since we take pairs of letters as input, the output can simply be a true
or false value that says whether this is a good place to hyphenate or not. In that
case, the output layer only needs to have one single neuron.

The number of hidden layers and their neuron count depends on how difficult we
believe the problem to be. We don’t expect there to be any easy patterns to which

2

http://www.uio.no/studier/emner/matnat/ifi/INF3490/h14/exercises/bool_mlp.py
http://www.uio.no/studier/emner/matnat/ifi/INF3490/h14/exercises/bool_mlp.py


letter-pairs that are “hyphenatable”, so the classification problem is unlikely to be
linearly separable, or maybe even separable by a convex shape, so it would probably
be wise to have two hidden layers, so that the network can classify complex shapes
in the input space. The number of neurons in each layer would have to be up to
experimentation, but a wise default value might be to reduce the number of neurons
in each layer linearly, so if you have N inputs, you would have 2N/3 neurons in the
first hidden layer and N/3 neurons in the second. Again, with the English alphabet,
this would give 104/3 ≈ 35 and 52/3 ≈ 17 hidden nodes.

3


