UNIVERSITY OF OSLO

Faculty of Mathematics and Natural Sciences

Exam in INF3490/4490 — Biologically Inspired Computing

Day of exam: December 3rd, 2014

Exam hours: 14:30 – 18:30

This examination paper consists of 7 pages.

Appendices: 1
Permitted materials: None

Make sure that your copy of this examination paper is complete before answering.

The exam text consists of problems 1-30 (multiple choice questions) to be answered on the form that is enclosed in the appendix and problems 31-33 which are answered on the usual sheets. Problems 1-30 have a total weight of 60%, while problems 31-33 have a weight of 40%.

About problem 1-30:

Each problem consists of a topic in the left column and a number of statements each indicated by a capital letter. Problems are answered by marking true statements with a clear cross (X) in the corresponding row and column in the attached form, and leaving false statements unmarked. Each problem has a variable number of true statements, but there is always *at least one* true and false statement for each problem. 0.5 points are given for each marked true statement and for each false statement left unmarked, resulting in a score ranging from 0 to 60

You can use the right column of the text as a draft. The form in the appendix is the one to be handed in (remember to include your candidate number).

Problem 1

Hill climbing	A	Is a population-based optimization algorithm	
	В	Results depend on the starting points	
	C	Can only be done when a solution has a finite number of	
		neighbors	
	D	Has less randomness than greedy search	

Strategy	Α	Adapt mutation using a fixed strategy schedule	
parameters	В	Improve the chances of finding a better solution in the	
		short term	
	С	Improve the chances of finding the global optimum	
	D	Adapt mutation by adjusting the normal distribution spread	

Evolution	Α	Random parents selection	
strategies have	В	Uniform mutation	
	С	Recombination by partially mapped crossover	
	D	Fitness proportional survivor selection	

Problem 4

The crossover	A	Integer representations	
operators used in	В	Real-valued representations	
binary	С	Permutation representations	
representations can	D	Tree representations	
also be used in		•	

Problem 5

Permutation	Α	Swap mutation	
representation	В	Creep mutation	
works with	С	Scramble mutation	
	D	Insert mutation	

Problem 6

Adding an offset to	Α	Fitness proportional selection	
all fitness values	В	Ranking selection	
affects selection	C	Tournament selection	

Problem 7

One can improve	A	Ensuring that the initial population well distributed	
results on multi-	В	Reducing the population size	
modal problems by	С	Reducing the fitness of individuals that are close to others	
	D	Increasing the selection pressure	

Pareto dominance	Α	Is hard to combine with tournament selection	
	В	Can be used to sort points according to multiple objectives	
	С	Reduces the objective functions to a scalar value	
	D	A solution dominates another if it is as good in every way	
		and better in at least one	

Running multiple	A	An exhaustive search	
times is necessary	В	An evolution strategy	
to measure the	С	Training a multi-layer perceptron	
performance of	D	Training a self-organizing map	

Problem 10

Machine learning	A	Should be distinguished from self-learning	
	В	Is applicable to classification problems	
	С	A number of different biology-inspired methods could be	
		used for machine learning	
	D	Is learning automatically from examples	

Problem 11

Machine learning	A	Can be applied to analyze new data	
	В	Is an alternative to artificial intelligence	
	С	Can be used at design time and/or at run time	
	D	Is always learning from scratch and not adaptation of a	
		previously learned system	

Problem 12

Machine learning	A	Supervised learning is good for clustering problems	
algorithms	В	Reinforcement learning is about learning behavior based	
		on reward	
	С	Unsupervised learning does not require target values	
	D	Selecting among the above learning methods is	
		independent of the problem to be solved	

Problem 13

Swarm intelligence algorithms	A	Are inspired by interaction in nature between living beings in motion	
	В	Are focused on centralized control	
	С	Simple local rules are often applicable	
	D	It is difficult to predict the global behavior of the system	

Problem 14

Particle Swarm	A	Is a population based algorithm	
Optimization	В	Particles are selected for survival based on their fitness	
(PSO)	C	Velocity and position of each solution are updated	
	D	Updates are also based on neighbor particles	

Cartesian Genetic	Α	Has less restrictions than Genetic Programming	
Programming	В	Can be used for evolving digital circuits	
(CGP)	С	The level-back parameter indicates the number of previous	
		columns a node can connect to	
	D	Crossover is always used	

Classification	Α	Concerns finding decision boundaries that can be used to	
		separate out different classes	
	В	Evolvable hardware is not applicable for classification	
	С	Non-linear decision boundaries can solve more complex	
		problems than linear boundaries (straight lines)	
	D A test set is more relevant for testing generalize		
		the training set	

Problem 17

Biological neural	Α	The outputs from a neurons are pulses of fixed strength	
networks		(height) and duration	
	В	The output from the neuron is called a synapse	
	С	Synapses can be inhibitory or excitatory	
	D	Learning takes place in the dendrites	

Problem 18

Which function does the	Α	NAND	
following multi-layer	В	NOR	
perceptron realize:	C	AND	
	D	XOR	
-1 -0.5			
A 1 E			
-1			
1			
В Б			1

Problem 19

Multilayer	A	Usually, the weights are initially set to small random	
perceptron network		values	
	В	A hard limiting activation function is often used	
	С	The weights can only be updated after all the training	
		vectors have been presented	
	D	Multiple layers of neurons allow for less complex decision	
		boundaries than a single layer	

Support Vector	A	Support vectors are used for computing hyperplanes	
Machines (SVMs)	В	Is a method for minimizing the margin to hyperplanes	
	C	Nonlinear problems are handled with mapping inputs to	
		lower-dimensional space	
	D	Kernel functions are used for transforming data	

Which separation line would	Α	
SVM most likely choose?	В	
A B C	C	
• / /	D	
• // 00		
\bullet \lor		
D		
///0		
/ /		
/		

Problem 22

Soft margins in	A	Reduce misclassifications during training	
SVMs	В	Allow some of the training data to be misclassified by	
		introducing slack variables	
	С	Reduce the problem of training data overfitting	
	D	Are not useful if any training data is mislabeled	

Problem 23

Ensemble learning	A	A combination of classifiers are applied for classification	
	В	Classifiers should be trained to be slightly different	
	С	In bagging, each training sample (data point) is used only	
		once for each iteration	
	D	Minority voting is used if there is disagreement	

Problem 24

Principal	Α	Finds the directions with the most variation in the data	
component	В	Is useful for visualizing data	
analysis (PCA)	С	Dimensions are increased when applying PCA	
	D	Eigenvalues and eigenvectors are computed from the	
		covariance matrix	

Unsupervised	A	Categorizes training vectors by identifying similarities				
learning		between them				
	В	Can use the same error functions as supervised learning				
C Collaborative learning methods are often appl		Collaborative learning methods are often applied between				
		classes				
		The data applied is unlabeled				

k-means	A	Automatically finds the number of clusters				
	В	Each cluster center is moved to the mean of data points				
		assigned to it for each iteration				
	С	A too small number of clusters may lead to overfitting				
	D	The algorithm has converged when the change in cluster				
		assignment is less than a threshold				

Problem 27

Self-Organizing	Α	ncludes both a competition and collaboration part					
Feature Map	В	Two or more weight layers are often used					
	С	Training data that are similar excite neurons that are near to					
		each other					
	D	Represents a clustering technique					

Problem 28

Self-Organizing	Α	ncreased network size leads to increased generalization			
Feature Map	В	Weights of the winner neuron (and its neighborhood) are			
learning		updated			
		The number of weights being modified for each training			
		vector is increased throughout learning			
		A neighborhood function is used to compute the distance to			
		the winner neuron			

Problem 29

Reinforcement	A	Works best with smaller state spaces				
learning	В	Keeps a log of all individual actions taken by the agent				
	С	Requires the agent to know the rewards for every action				
	D	Models learning behavior in animals				

Reinforcement	Α	Is specified in the interval $[-1,0]$					
learning discount	В	s used to account for uncertainties about future rewards					
factor	С	Develops exponentially with time					
	D	Adjusts the balance between shortsightedness and					
		farsightedness					

Problem 31 (6%)

In a few sentences, sketch how you could modify a hill climbing algorithm in order to improve chances of finding the global optima.

Problem 32 (10%)

If you were to design an evolutionary algorithm to optimize the following problems, what kind of genetic representation (genotype) would you choose, and why? (Maximum two sentences for each)

- a) Finding the best route for delivering a set of packages to different addresses
- b) Optimize parameters of a physical structure like an antenna with a given shape
- c) Design of a digital circuit

Problem 33 (24%)

SiO, the student welfare organization, would like to have a system for sorting utensils after washing. You are going to help them designing a camera based classifier system for sorting knifes, forks, spoons and teaspoons into separate bins. You have a machine vision library available that lets you identify where there is a utensil in the camera images, and it extracts a large number of features for each identified object that we can use as inputs.

- (a) (4%) What class of learning algorithm would be best to use in this case, supervised, unsupervised or reinforcement learning? Justify your answer.
- (b) (4%) We would like to make a system for distinguishing the utensils using a multi-layer perceptron network. How many output neurons should the network have, and what would each of them represent?
- (c) (8%) Sketch the steps in the forward and backward phase of the multi-layer perceptron algorithm (backpropagation). Use words and not equations.
- (d) (4%) What are the different approaches to how often weights are updated during training?
- (e) (4%) How would you find out when to stop the training?

INF3490/INF4490 Answers problems 1 – 30 for candidate no: _____

Problem	A	В	C	D
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				

INF3490/INF4490 Answers problems 1-30

Problem	A	В	C	D
1		0		
2		0		O
3	0			
4	0 0 0 0	0		
5	0		0	0
6	0			
7	0		0	
8		0		0
9		0	0	0
10		0 0	0	0 0
11 12 13 14 15 16	0		0 0 0 0 0 0 0	
12		0	0	
13	0 0 0 0		0	0
14	0		0	0
15		0	0	
	0		0	0
17	0		0	
18				0
19	0			
20	0			0
21			0	
22		0	0	
23	0	0		
24	0 0 0	0		Ο
25	Ο			Ο
26		0		Ο
27	Ο		0	0 0 0
28		0		0
29	0			0
30		0	0	0