

UiO **Contemporation** University of Oslo

Multiple-choice Questions on Parts of the Exam

The exam text consists of problems 1-30 (multiple choice questions) to be answered on the form that is enclosed in the appendix and problems 31-32 which are answered on the usual sheets. Problems 1-30 have a total weight of 60%, while problems 31-32 have a weight of 40%.

About problem 1-30:

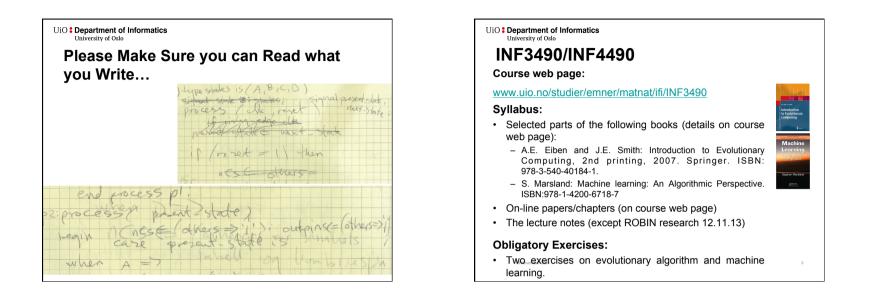
Each problem consists of a topic in the left column and a number of statements each indicated by a capital letter. Problems are answered by marking true statements with a clear cross (X) in the corresponding row and column in the attached form, and leaving false statements unmarked. Each problem has a variable number of true statements, but there is always *at least one* true and false statement for each problem. 0.5 points are given for each marked true statement and for each false statement left unmarked, resulting in a score ranging from 0 to 60.

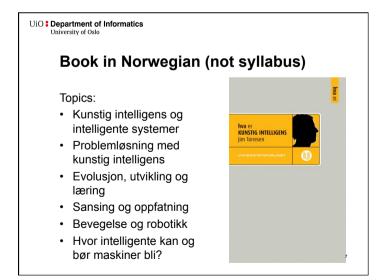
You can use the right column of the text as a draft. The form in the appendix is the one to be handed in (remember to include your candidate number).

Problem 1

Biologically inspired	Α	Topic for a course at IFI	
computing	В	Is mostly relevant for safety-critical systems	
	С	Evolutionary computing is included in this field	
	D	Must be programmed in a specific language	

UiO **Compartment of Informatics**

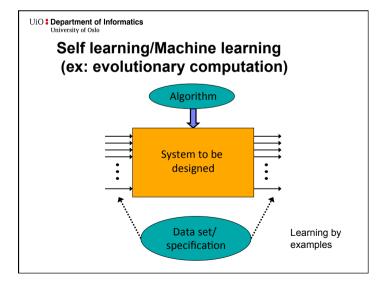

Reply on Multiple-choice Questions on Attached Form


Appendix 1

4

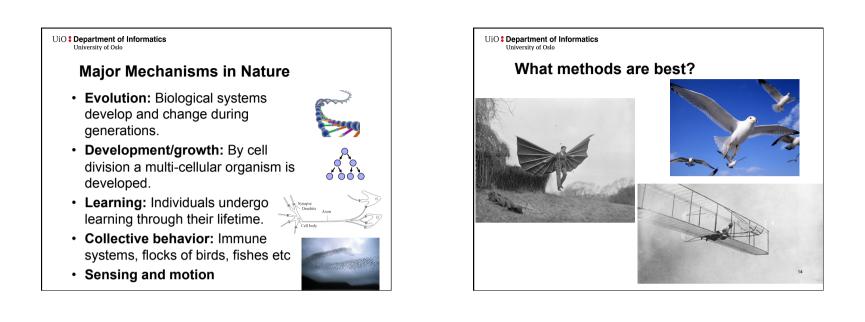
INF3490/INF4490 Answers problems 1 – 30 for candidate no:

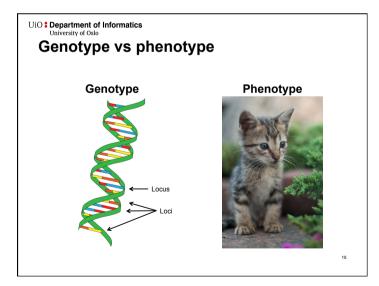
Problem	Α	В	С	D
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				



UiO : Department of Informatics University of Oslo	
Username and Password Course Web Page	
username: authorization	
password: complete	
19 November 2014 8	

	Lecture Plan Autumn 2014				
Date	Торіс	Syllabus			
27.08.2014	Intro to the course. Optimization and search.	Marsland (chapter 11.1, 11.4-11.6)			
03.09.2014	Evolutionary algorithms I: Introduction. Evolutionary strategies and evolutionary programming.	Eiben & Smith (chapter 1, 2, 4 and 5.1, 5.3-5.8)			
10.09.2014	Evolutionary algorithms II: Genetic algorithm and representations. Genetic programming	Eiben & Smith (chapter 3, 6) (Marsland 12.1-12.4			
17.09.2014	Evolutionary algorithms III: Multi-objective optimization. Working with evolutionary algorithms.	Eiben & Smith (chapter 9, 10 and 14)			
24.09.2014	Intro to machine learning and classification. Single-layer neural networks.	Marsland (chapter 1 and 2)			
01.10.2014	Break (no lecture)				
08.10.2014	Multi-layer neural networks. Backpropagation and practical issues	Marsland (chapter 3)			
15.10.2014	Swarm Intelligence and evolvable hardware	On-line documents			
22.10.2014	Support vector machines. Ensemble learning. Dimensionality reduction.	Marsland (chapter 5, 7 and 10.2)			
29.11.2014	Unsupervised learning. K-means. Self-organizing maps.	Marsland (chapter 9.1 and 9.2)			
05.11.2014	Reinforcement learning	Marsland (chapter 13)			
12.11.2014	Bioinspired computing for robots and music. Future perspectives on Artificial Intelligence	On-line documents			
19.11.2014	Summary. Questions				




UiO **Contemporation** University of Oslo

Man/Woman vs Machine - Who are smartest?

- · Machines are good at:
 - number crunching
 - storing data and searching in data
 - specific tasks (e.g. control systems in manufacturing)
- Humans are good at:
 - sensing (see, hear, smell etc and be able to recognize what we senses)
 - general thinking/reasoning
 - motion control (speaking, walking etc).

12

JiO * Department of Informatics University of Oslo						
Th _{Name}	e standa Representation	Crossover	Varia Mutation	Parent selection	Survivor selection	Specialty
Genetic Algorithm	Usually fixed-length vector	Any or none	Any	Any	Any	None
Evolution Strategies	Real-valued vector	Discrete or intermediate recombination	Gaussian	Random draw	Best N	Strategy parameters
Evolutionary Programming	Real-valued vector	None	Gaussian	One child each	Tournament	Strategy parameters
Genetic Programming	Tree	Swap sub-tree	Replace sub-tree	Usually fitness proportional	Generational replacement	None
						16

18

UiO **Contemporation** Department of Informatics University of Oslo

Representations

- Candidate solutions (individuals) exist in phenotype space
- They are encoded in **chromosomes**, which exist in *genotype* space
 - Encoding : phenotype=> genotype (not necessarily one to one)
 - Decoding : genotype=> phenotype (must be one to one)
- Chromosomes contain genes, which are in (usually fixed) positions called loci (sing. locus) and have a value (allele)

In order to find the global optimum, every feasible solution must be represented in genotype space

UiO : Department of Informatics University of Oslo

Off- / on-policy learning

- · On-policy: SARSA
- · Off-policy: Q-learning

"The difference may be explained as SARSA learns the Q values associated with taking the policy it follows itself, while Watkin's Q-learning learns the Q values associated with taking the exploitation policy while following an exploration/ exploitation policy." - Wikipedia

UiO **Department of Informatics** University of Oslo

Repetiton Questions

- What is Al/machine learning?
 - Self-learning/adaptive methods
 - Learning by examples (rather than being programmed)

19

- Give some examples of intelligent mechanisms in nature
 - Evolution
 - Development/growth
 - Learning
 - Collective behavior
 - Sensing and motion