
Biologically inspired computing - Lecture 2 
 

Evolution strategies & 
Evolutionary programming 



This lecture 

• Random optimization 
• Evolution strategies (+ EAs in general) 

– The strategy parameter 
– Random displacements as mutation 
– Selection and recombination 

• Evolutionary programming 
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Hill climbing in ℝ𝒏 

• Hill climbing: 
– Randomly select one neighboring solution 
– Continuous space: need to define neighborhood 
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Random optimization 

• The entire space is the neighborhood 
– Selection probabilities are normally distributed: 

Closer solutions are more likely to be selected 
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Random optimization 
 

def random_opt(): 

 X = random_vector() 

 while not_done(): 

  Y = X + normal(0,sigma) 

  if (f(X) < f(Y)): 

    X = Y 

 return X 
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 The (1 + 1) evolution strategy 

When the current solution gets close to an 
optima the probability of a better solution being 
selected decreases  
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 The (1 + 1) evolution strategy 

• To compensate, we can reduce the spread of 
the distribution 

• 𝜎 afftects our search strategy 
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The (1 + 1) evolution strategy 

• Add a strategy parameter 𝜎 to random optimization 
and you get the (1+1) ES: 

 

def random_opt(): 

 X.x = random_vector() 

 X.s = initial_sigma() 

 while not_done(): 

  Y.s = X.s*exp(normal(0,tau)) 

  Y.x = X.x + normal(0,Y.s) 

  if (f(X) < f(Y)): 

    X = Y 

 return X.x 
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The evolution analogy 
Optimization Biology 
Candidate solution Individual 
Old solution Parent 
New solution Offspring 
Solution quality Fitness 
Random displacements added 
to offspring 

Mutation 

Search strategy Mutation rate, gene robustness 
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Robustness 

• The (1+1) ES is more efficient at finding accurate 
solutions, but it remains vulnerable to local optima 
 

• Solution: Run multiple times? 
– Sometimes referred to as (1+1) reset 

 
• Even better: Do multiple runs in parallel and make 

use of the extra information from having multiple 
solutions available at once 
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The evolution analogy 
Optimization Biology 
Candidate solution Individual 
Old solution Parent 
New solution Offspring 
Solution quality Fitness 
Random displacements added 
to offspring 

Mutation 

Search strategy Mutation rate, gene robustness 
A set of solutions Population 
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Evolutionary algorithm outline 
 

def evolve(): 

 P.x = initialize_population() 

 P.fitness = evaluate(P.x) 

 while not_done(): 

  Q.x = reproduce(P) 

  Q.x = mutate(Q.x) 

  Q.fitness = evaluate(Q.x) 

  P = survival(P,Q) 

 return best(P).x 
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Evolutionary algorithm outline 

• initialize_population() 
– Generates a set of starting points 
– May be completely random solutions,  

or some hand-crafted selection 
 

• evaluate(P) 
– Applies the objective function to all elements in P 
– Problem-dependent 
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Evolutionary algorithm outline 

• reproduce(P) 
– Creates a new population from P 
 

• mutate(X) 
– Applies random changes to the individuals in X 
 

• survival(P,Q)  
– Creates a new population from P and Q 
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Evolution strategies 

• Each individual is composed of 𝑛 solution 
parameters and 𝑛𝜎 strategy parameters: 
 

𝑥1, … , 𝑥𝑛,𝜎1, … ,𝜎𝑛𝜎  
 

- Usually 𝑛𝜎 is either 1 (all 𝑥𝑖 share one strategy) 
or 𝑛 (each 𝑥𝑖 have a separate search strategy) 

- Sometimes an additional set of parameters 𝛼𝑖 is 
used to model correlations between strategies 
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Evolution strategies 

• Recombination creates 𝜆 offspring 
• Each one draws two parents at random and recombines them 

using  intermediary or discrete recombination 
• It is common to mix, i.e. use discrete for 𝑥𝑖 and intermediate for 𝜎𝑖 
 

def reproduce(P): 

 Q = [] 

 for i in range(1,lambda): 

  parents = draw(2,P) 

  offspring = recombine(parents[0], parents[1]) 

  Q.append(offspring) 

 return Q 
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Discrete recombination 

• Each parameter is chosen from one of the 
parents at random 
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Intermediary recombination 

• Each parameter is chosen as the average of 
from the parents 
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Evolution strategies 

• Two survivor selection methods: 
– 𝜇, 𝜆 : from the offspring only 
– 𝜇 + 𝜆 : from both parents and offspring 

 
• In both cases the survivor candidates are 

sorted by fitness, and the 𝜇 best are kept 
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Evolution strategies 

• 𝜇, 𝜆  is often preferred, for several reasons: 
– Better able to escape local optima 
– Able to adapt to changing fitness functions 
– Since solutions aren’t evaluated for how good the 

strategy parameters are, bad strategies can linger 
in the population if parents can survive indefinitely 
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Evolutionary programming 

• Historically, evolutionary programming was 
mainly concerned with prediction problems 

• More recently the field has diversified a lot, 
and is used for all kinds of different problems 
and with many different representations and 
mutation schemes 

• Here we will focus on a variant for continuous 
optimization 
 

22 



Evolution strategies vs.  
Evolutionary programming 

Evolution strategies Evolutionary programming 
Representation Vector of solution and strategy parameters 
Parent selection Probabilistic Deterministic 
Recombination Probabilistic  None 
Mutation 𝜎𝑖′ = 𝜎𝑖 ⋅ 𝑒𝑁(0,𝜏) 

𝑥𝑖′ = 𝑥𝑖 + 𝑁(0,𝜎𝑖′) 
𝜎𝑖′ = 𝜎𝑖 ⋅ 1 + 𝑁 0,𝛼  
𝑥𝑖′ = 𝑥𝑖 + 𝑁(0,𝜎𝑖′) 

Survivor selection Deterministic Probabilistic 
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Evolutionary programming 

• In EP each solution is seen as a species 
instead of an individual 
– Recombination does not make sense! 
– Each solution gives rise to exactly one new 

solution each generation 
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Evolutionary programming 

Survivor selection is done by tournaments 
- Each solution is compared to 𝑞 other randomly selected 

solutions (𝑞 is typically about 10) 
- The best half, ranked by the number of “wins” survives 

 

def survival(P,Q): 

 PQ = [P,Q] 

 for i in range(1, 2*mu): 

  vs = draw(q, PQ) 

  score = sum( PQ[i].fitness > vs.fitness ) 

 return best(mu, PQ, score) 
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