
Biologically inspired computing - Lecture 2

Evolution strategies &
Evolutionary programming

This lecture

• Random optimization
• Evolution strategies (+ EAs in general)

– The strategy parameter
– Random displacements as mutation
– Selection and recombination

• Evolutionary programming

3

Hill climbing in ℝ𝒏

• Hill climbing:
– Randomly select one neighboring solution
– Continuous space: need to define neighborhood

4

x

?
?

? ?

?
?

Random optimization

• The entire space is the neighborhood
– Selection probabilities are normally distributed:

Closer solutions are more likely to be selected

5

x

Random optimization

def random_opt():

 X = random_vector()

 while not_done():

 Y = X + normal(0,sigma)

 if (f(X) < f(Y)):

 X = Y

 return X

6

 The (1 + 1) evolution strategy

When the current solution gets close to an
optima the probability of a better solution being
selected decreases

7

x

𝜎2 = 0.1
𝑃 = 0.246

 The (1 + 1) evolution strategy

• To compensate, we can reduce the spread of
the distribution

• 𝜎 afftects our search strategy

8

x

𝜎2 = 0.05
𝑃 = 0.314

The (1 + 1) evolution strategy

• Add a strategy parameter 𝜎 to random optimization
and you get the (1+1) ES:

def random_opt():

 X.x = random_vector()

 X.s = initial_sigma()

 while not_done():

 Y.s = X.s*exp(normal(0,tau))

 Y.x = X.x + normal(0,Y.s)

 if (f(X) < f(Y)):

 X = Y

 return X.x

 9

The evolution analogy
Optimization Biology
Candidate solution Individual
Old solution Parent
New solution Offspring
Solution quality Fitness
Random displacements added
to offspring

Mutation

Search strategy Mutation rate, gene robustness

10

Robustness

• The (1+1) ES is more efficient at finding accurate
solutions, but it remains vulnerable to local optima

• Solution: Run multiple times?
– Sometimes referred to as (1+1) reset

• Even better: Do multiple runs in parallel and make

use of the extra information from having multiple
solutions available at once

11

The evolution analogy
Optimization Biology
Candidate solution Individual
Old solution Parent
New solution Offspring
Solution quality Fitness
Random displacements added
to offspring

Mutation

Search strategy Mutation rate, gene robustness
A set of solutions Population

12

Evolutionary algorithm outline

def evolve():

 P.x = initialize_population()

 P.fitness = evaluate(P.x)

 while not_done():

 Q.x = reproduce(P)

 Q.x = mutate(Q.x)

 Q.fitness = evaluate(Q.x)

 P = survival(P,Q)

 return best(P).x

13

Evolutionary algorithm outline

• initialize_population()
– Generates a set of starting points
– May be completely random solutions,

or some hand-crafted selection

• evaluate(P)
– Applies the objective function to all elements in P
– Problem-dependent

 14

Evolutionary algorithm outline

• reproduce(P)
– Creates a new population from P

• mutate(X)
– Applies random changes to the individuals in X

• survival(P,Q)
– Creates a new population from P and Q

15

Evolution strategies

• Each individual is composed of 𝑛 solution
parameters and 𝑛𝜎 strategy parameters:

𝑥1, … , 𝑥𝑛,𝜎1, … ,𝜎𝑛𝜎

- Usually 𝑛𝜎 is either 1 (all 𝑥𝑖 share one strategy)
or 𝑛 (each 𝑥𝑖 have a separate search strategy)

- Sometimes an additional set of parameters 𝛼𝑖 is
used to model correlations between strategies

16

Evolution strategies

• Recombination creates 𝜆 offspring
• Each one draws two parents at random and recombines them

using intermediary or discrete recombination
• It is common to mix, i.e. use discrete for 𝑥𝑖 and intermediate for 𝜎𝑖

def reproduce(P):

 Q = []

 for i in range(1,lambda):

 parents = draw(2,P)

 offspring = recombine(parents[0], parents[1])

 Q.append(offspring)

 return Q

17

Discrete recombination

• Each parameter is chosen from one of the
parents at random

18

Parent B

Parent A
𝑥1

𝑥2

𝑥3

Possible offspring

Intermediary recombination

• Each parameter is chosen as the average of
from the parents

19

Parent B

𝑥1

𝑥2

𝑥3

Possible offspring

Parent A

Evolution strategies

• Two survivor selection methods:
– 𝜇, 𝜆 : from the offspring only
– 𝜇 + 𝜆 : from both parents and offspring

• In both cases the survivor candidates are

sorted by fitness, and the 𝜇 best are kept

20

Evolution strategies

• 𝜇, 𝜆 is often preferred, for several reasons:
– Better able to escape local optima
– Able to adapt to changing fitness functions
– Since solutions aren’t evaluated for how good the

strategy parameters are, bad strategies can linger
in the population if parents can survive indefinitely

21

Evolutionary programming

• Historically, evolutionary programming was
mainly concerned with prediction problems

• More recently the field has diversified a lot,
and is used for all kinds of different problems
and with many different representations and
mutation schemes

• Here we will focus on a variant for continuous
optimization

22

Evolution strategies vs.
Evolutionary programming

Evolution strategies Evolutionary programming
Representation Vector of solution and strategy parameters
Parent selection Probabilistic Deterministic
Recombination Probabilistic None
Mutation 𝜎𝑖′ = 𝜎𝑖 ⋅ 𝑒𝑁(0,𝜏)

𝑥𝑖′ = 𝑥𝑖 + 𝑁(0,𝜎𝑖′)
𝜎𝑖′ = 𝜎𝑖 ⋅ 1 + 𝑁 0,𝛼
𝑥𝑖′ = 𝑥𝑖 + 𝑁(0,𝜎𝑖′)

Survivor selection Deterministic Probabilistic

23

Evolutionary programming

• In EP each solution is seen as a species
instead of an individual
– Recombination does not make sense!
– Each solution gives rise to exactly one new

solution each generation

24

Evolutionary programming

Survivor selection is done by tournaments
- Each solution is compared to 𝑞 other randomly selected

solutions (𝑞 is typically about 10)
- The best half, ranked by the number of “wins” survives

def survival(P,Q):

 PQ = [P,Q]

 for i in range(1, 2*mu):

 vs = draw(q, PQ)

 score = sum(PQ[i].fitness > vs.fitness)

 return best(mu, PQ, score)

25

	Biologically inspired computing - Lecture 2�
	This lecture
	Hill climbing in ℝ 𝒏
	Random optimization
	Random optimization
	 The (1+1) evolution strategy
	 The (1+1) evolution strategy
	The (1+1) evolution strategy
	The evolution analogy
	Robustness
	The evolution analogy
	Evolutionary algorithm outline
	Evolutionary algorithm outline
	Evolutionary algorithm outline
	Evolution strategies
	Evolution strategies
	Discrete recombination
	Intermediary recombination
	Evolution strategies
	Evolution strategies
	Evolutionary programming
	Evolution strategies vs. �Evolutionary programming
	Evolutionary programming
	Evolutionary programming

