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Biologically inspired computing - Lecture 2

Evolution strategies &
Evolutionary programming

This lecture

• Random optimization
• Evolution strategies (+ EAs in general)

– The strategy parameter
– Random displacements as mutation
– Selection and recombination

• Evolutionary programming
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Hill climbing in 

• Hill climbing:
– Randomly select one neighboring solution
– Continuous space: need to define neighborhood
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Random optimization

• The entire space is the neighborhood
– Selection probabilities are normally distributed: 

Closer solutions are more likely to be selected
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Random optimization

def random_opt():

X = random_vector()

while not_done():

Y = X + normal(0,sigma)

if (f(X) < f(Y)):

X = Y

return X
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The 1 1 evolution strategy

When the current solution gets close to an 
optima the probability of a better solution being 
selected decreases 
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The 1 1 evolution strategy

• To compensate, we can reduce the spread of 
the distribution

• afftects our search strategy
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The 1 1 evolution strategy

• Add a strategy parameter to random optimization 
and you get the (1+1) ES:

def random_opt():

X.x = random_vector()

X.s = initial_sigma()

while not_done():

Y.s = X.s*exp(normal(0,tau))

Y.x = X.x + normal(0,Y.s)

if (f(X) < f(Y)):

X = Y

return X.x
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The evolution analogy
Optimization Biology
Candidate solution Individual
Old solution Parent
New solution Offspring
Solution quality Fitness
Random displacements added 
to offspring

Mutation

Search strategy Mutation rate, gene robustness
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Robustness

• The (1+1) ES is more efficient at finding accurate 
solutions, but it remains vulnerable to local optima

• Solution: Run multiple times?
– Sometimes referred to as (1+1) reset

• Even better: Do multiple runs in parallel and make 
use of the extra information from having multiple 
solutions available at once
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The evolution analogy
Optimization Biology
Candidate solution Individual
Old solution Parent
New solution Offspring
Solution quality Fitness
Random displacements added 
to offspring

Mutation

Search strategy Mutation rate, gene robustness
A set of solutions Population
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Evolutionary algorithm outline

def evolve():

P.x = initialize_population()

P.fitness = evaluate(P.x)

while not_done():

Q.x = reproduce(P)

Q.x = mutate(Q.x)

Q.fitness = evaluate(Q.x)

P = survival(P,Q)

return best(P).x
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Evolutionary algorithm outline

• initialize_population()

– Generates a set of starting points
– May be completely random solutions, 

or some hand-crafted selection

• evaluate(P)

– Applies the objective function to all elements in P
– Problem-dependent
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Evolutionary algorithm outline

• reproduce(P)

– Creates a new population from P

• mutate(X)

– Applies random changes to the individuals in X

• survival(P,Q)

– Creates a new population from P and Q
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Evolution strategies

• Each individual is composed of solution 
parameters and strategy parameters:

, … , , , … ,

- Usually is either 1 (all share one strategy)
or (each have a separate search strategy)

- Sometimes an additional set of parameters is 
used to model correlations between strategies
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Evolution strategies

• Recombination creates offspring
• Each one draws two parents at random and recombines them 

using  intermediary or discrete recombination
• It is common to mix, i.e. use discrete for and intermediate for 

def reproduce(P):

Q = []

for i in range(1,lambda):

parents = draw(2,P)

offspring = recombine(parents[0], parents[1])

Q.append(offspring)

return Q
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Discrete recombination

• Each parameter is chosen from one of the 
parents at random
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Parent A

Possible offspring

Intermediary recombination

• Each parameter is chosen as the average of 
from the parents
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Evolution strategies

• Two survivor selection methods:
– , : from the offspring only
– : from both parents and offspring

• In both cases the survivor candidates are 
sorted by fitness, and the best are kept
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Evolution strategies

• , is often preferred, for several reasons:
– Better able to escape local optima
– Able to adapt to changing fitness functions
– Since solutions aren’t evaluated for how good the 

strategy parameters are, bad strategies can linger 
in the population if parents can survive indefinitely
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Evolutionary programming

• Historically, evolutionary programming was 
mainly concerned with prediction problems

• More recently the field has diversified a lot, 
and is used for all kinds of different problems 
and with many different representations and 
mutation schemes

• Here we will focus on a variant for continuous 
optimization
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Evolution strategies vs. 
Evolutionary programming

Evolution strategies Evolutionary programming
Representation Vector of solution and strategy parameters
Parent selection Probabilistic Deterministic
Recombination Probabilistic None
Mutation ⋅ ,

0,
⋅ 1 0,

0,
Survivor selection Deterministic Probabilistic
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Evolutionary programming

• In EP each solution is seen as a species 
instead of an individual
– Recombination does not make sense!
– Each solution gives rise to exactly one new 

solution each generation
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Evolutionary programming

Survivor selection is done by tournaments
- Each solution is compared to other randomly selected 

solutions ( is typically about 10)
- The best half, ranked by the number of “wins” survives

def survival(P,Q):

PQ = [P,Q]

for i in range(1, 2*mu):

vs = draw(q, PQ)

score = sum( PQ[i].fitness > vs.fitness )

return best(mu, PQ, score)
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