

1

Optimization	Biology
andidate solution	Individual
Old solution	Parent
lew solution	Offspring
Solution quality	Fitness
andom displacements added	Mutation
Search strategy	Mutation rate, gene robustness

The evolution analogy		
Optimization	Biology	
Candidate solution	Individual	
Old solution	Parent	
New solution	Offspring	
Solution quality	Fitness	
Random displacements added to offspring	Mutation	
Search strategy	Mutation rate, gene robustness	
A set of solutions	Population	

UiO **Department of Informatics** University of Oslo

Evolution strategies

• Each individual is composed of *n* solution parameters and n_{σ} strategy parameters:

$$\langle x_1, \ldots, x_n, \sigma_1, \ldots, \sigma_{n_\sigma} \rangle$$

- Usually n_{σ} is either 1 (all x_i share one strategy) or n (each x_i have a separate search strategy)
- Sometimes an additional set of parameters α_i is used to model correlations between strategies

16

UiO **Department of Informatics** University of Oslo

Evolution strategies

- Recombination creates λ offspring
- Each one draws two parents at random and recombines them
 using intermediary or discrete recombination
- It is common to mix, i.e. use discrete for x_i and intermediate for σ_i

def reproduce(P):

```
Q = []
for i in range(1,lambda):
    parents = draw(2,P)
    offspring = recombine(parents[0], parents[1])
    Q. append(offspring)
return Q
```

17

23

25

UiO **Department of Informatics**

Evolutionary programming

- Historically, evolutionary programming was mainly concerned with prediction problems
- More recently the field has diversified a lot, and is used for all kinds of different problems and with many different representations and mutation schemes
- Here we will focus on a variant for continuous optimization

22

24

UiO **Department of Informatics**

Evolution strategies vs. Evolutionary programming

	Evolution strategies	Evolutionary programming
Representation	Vector of solution and strategy parameters	
Parent selection	Probabilistic	Deterministic
Recombination	Probabilistic	None
Mutation	$\sigma'_i = \sigma_i \cdot e^{N(0,\tau)}$ $x'_i = x_i + N(0,\sigma'_i)$	$\sigma_i' = \sigma_i \cdot (1 + N(0, \alpha))$ $x_i' = x_i + N(0, \sigma_i')$
Survivor selection	Deterministic	Probabilistic

Evolutionary programming

UIO: Department of Informatics

University of Oslo

- In EP each solution is seen as a species instead of an individual
 - Recombination does not make sense!
 - Each solution gives rise to exactly one new solution each generation

UiO **Department of Informatics** University of Oslo

Evolutionary programming

Survivor selection is done by tournaments

- Each solution is compared to *q* other randomly selected solutions (*q* is typically about 10)
- The best half, ranked by the number of "wins" survives

def survival (P, Q): PQ = [P, Q] for i in range(1, 2*mu): vs = draw(q, PQ) score = sum(PQ[i].fitness > vs.fitness) return best(mu, PQ, score)