

UiO : Department of Informatics
 University of Oslo

Biologically inspired computing - Lecture 3

Representations
(Genetic algorithms \& Genetic programming)

This lecture

- Representations
- Recombination
- Mutation

Optimization problems

- Continuous optimization
- 0-1 knapsack problem
- Other knapsack problems
- Travelling salesman problem
- Task solving problems

Real-valued representations

- As shown in the previous lecture
- Represents continuous solution spaces
- The solution parameters are often accompanied by strategy parameters for adaptive normal distribution-based mutation

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 0.1 & 3.3 & 1.7 & 3.4 & 7.2 & 5.9 \\
\hline
\end{array}
$$

Binary representation

- The representation used in the simple genetic algorithm (SGA)
- Directly inspired by low-level encoding in DNA
- Uses a binary $(0,1)$ coding instead of the quaternary (G,T,A,C) coding used in nature

0	1	1	0	1	0	0	0

Integer representation

- Each element is directly coded as an integer
- Usually restricted to some pre-defined ranges

0	5	8	3	1	3	7	5

Permutation representation

- Used to solve problems like the travelling salesman
- Known set of actions (go to town X)
- Want to optimize their sequence

Tree representation

- Tree representations of programs or arithmetic expressions
- Mainly used in genetic programming

Representations

```
def evol ve():
    P. x = i niti al ize_popul ation()
    P.fitness = eval uate(P.x)
    while not_done():
        Q. x = reproduce(P)
        Q. }x=\mathrm{ mut ate( Q. x)
        Q.fitness = eval uate( Q. x)
        P = survival (P,Q)
        return best(P).x
```

- The central concepts in evolutionary algorithms are independent of representation
- Mutation and recombination must be tailored to the representation used

Indirect representations

- Most problems will have a fixed solution representation associated with it
- However, sometimes it is beneficial to evolve solutions using a different representation and then transform them to do the evaluation

Expanding the analogy

Optimization	Biology
Candidate solution	Individual
Representation used in the EA	Genotype, chromosome
Problem-defined representation	Phenotype
Position/element of the genotype	Locus, gene
Old solution	Parent
New solution	Offspring
Solution quality	Fitness
Random displacements added to offspring	Mutation
Search strategy	Mutation rate, gene robustness
A set of solutions	Population

University of Oslo

Binary representation operators

0	1	1	0	1	0	0	0

Bit flip mutation

- Each bit is inverted with a probability p_{m}

N-point crossover

- N random points in the genotype is chosen
- At each point the source parent changes

Uniform crossover

- Which parent to inherit from is chosen randomly for each position
- Identical to discrete recombination

Binary coding of integers

- Encoding integers as blocks of a binary string has been quite common
- Keeps the analogy to DNA clean
- Problematic because mutations are not local
- Small changes to the solution are not more probable
- The result of flipping a single bit varies enormously with bit position and the value of all bits that encode the same integer

Integer representation operators

- Can use the same crossover operators as the binary representation

0	5	8	3	1	3	7	5

Random reset mutation

- Each element is reset with probability p_{m} to a random number in the range

0	5	8	3	1	3	7	5
\downarrow							
0	7	8	4	1	3	8	1

Creep mutation

- Adds a small value to each element with probability p_{m}

0	5	8	3	1	3	7	5
0	6	8	2	1	3	8	4

Integer coding of symbols

- Sometimes a vector of symbols with no clear order is the most reasonable representation choice
- In such cases, the symbols are usually enumerated and treated as

Symbol	Value
N	0
E	1
S	2
W	3

Real-valued representation operators

$$
\begin{array}{|l|l|l|l|l|l|}
\hline 0.1 & 3.3 & 1.7 & 3.4 & 7.2 & 5.9 \\
\hline
\end{array}
$$

Uniform mutation

- Each element has a probability p_{m} of being replaced with a number from some range

0.1	3.3	1.7	3.4	7.2	5.9		
\downarrow							
\downarrow							
0.1	3.3	6.1	3.4	5.0	5.9		

Arithmetic recombination

- Makes a copy of one of the parents x and y
- Picks one or more random positions k and replaces those elements with the interpolation $\alpha x_{k}+$ $(1-\alpha) y_{k}$, where α is either a fixed number or a random variable.
- Intermediate recombination: α is 0.5 for all k

Single arithmetic recombination

- Arithmetic recombination is applied to only one k

Whole arithmetic recombination

- Arithmetic recombination is applied with the same α to all k

Permutation representation

- Special mutation/recombination operators
- Each item should appear once and only once
- Result should be "close" to the original solution(s)

Swap Mutation

- Two random elements are swapped
- In some variants neighbors are always chosen

1	2	3	4	5	6	7	8	
1	5	3	4	2	6	7	8	

Insert mutation

- Two random elements are picked
- The second is placed right after the first

1	2	3	4	5	6	7	8
\checkmark							
1	2	5	3	4	6	7	8

Scramble \& invert mutation

- Two random points are selected
- The order of the elements in between is scrambled (scramble mutation) or reversed (invert mutation)

Partially mapped crossover (PMX)

- Two random points are chosen
- All elements between the points in parent A are copied to the offspring

Partially mapped crossover (PMX)

- For each element x in parent B between those points that is not in parent A
- Place it in the position in B of the element with the same position in A as x has in B

Partially mapped crossover (PMX)

- For each element x in parent B between those points that is not in parent A
- Place it in the position in B of the element with the same position in A as x has in B
- If that position is occupied, do one more redirection

Partially mapped crossover (PMX)

- Finally, the missing elements are copied from their places in parent B

Edge crossover

- Heuristic to preserve as many edges as possible

```
def edge_xo(PA, PB, N):
    e = construct_edge_tabl e()
    k = random(N)
    for I in range(1, N):
        X. append(k)
        e. remove(k)
        if e. empty(k): k = reverse(X) [-1]
        if e. empty(k): k = draw( 1, e. remai ni ng())
        el se:
            k = e. pi ck_common(k) or dram(1, e. pi ck_shortest(k))
    return X
```


Order crossover

- Two random points are chosen
- All elements between the points in parent A are copied to the offspring

Order crossover

- The rest of the elements are copied from parent B in the order starting from the second random point

Cycle crossover

- Identify first cycle
- Copy from parent A and B to offspring A and B

Cycle crossover

- Identify next cycle
- Copy from parent A and B to offspring B and A

Cycle crossover

- Identify last cycle
- Copy from parent A and B to offspring A and B

University of Oslo

Tree representation operators

Tree mutation

- Take a random node and replace it by a new randomly generated subtree

Tree crossover

- Take one random node from each parent and exchange them

Bloat in tree representations

- Larger trees will have greater fitness on average in most cases
- Without any active countermeasures the population will tend to grow indefinitely

