
Biologically inspired computing - Lecture 3

Representations

(Genetic algorithms & Genetic programming)

This lecture

• Representations
– Recombination
– Mutation

3

Optimization problems

• Continuous optimization

• 0-1 knapsack problem

• Other knapsack problems

• Travelling salesman problem

• Task solving problems

4

Real-valued representations

• As shown in the previous lecture
– Represents continuous solution spaces
– The solution parameters are often accompanied

by strategy parameters for adaptive normal
distribution-based mutation

5

0.1 3.3 1.7 3.4 7.2 5.9

Binary representation

• The representation used in the simple
genetic algorithm (SGA)
– Directly inspired by low-level encoding in DNA
– Uses a binary (0,1) coding instead of the

quaternary (G,T,A,C) coding used in nature

6

0 1 1 0 1 0 0 0

Integer representation

• Each element is directly coded as an integer
– Usually restricted to some pre-defined ranges

7

0 5 8 3 1 3 7 5

Permutation representation

• Used to solve problems like the travelling
salesman
– Known set of actions (go to town X)
– Want to optimize their sequence

8

Tree representation

• Tree representations of programs or
arithmetic expressions
– Mainly used in genetic programming

9

+

*

2 x

4 2𝑥 + 4

Representations

def evolve():

 P.x = initialize_population()

 P.fitness = evaluate(P.x)

 while not_done():

 Q.x = reproduce(P)

 Q.x = mutate(Q.x)

 Q.fitness = evaluate(Q.x)

 P = survival(P,Q)

 return best(P).x

• The central concepts in
evolutionary algorithms are
independent of representation

• Mutation and recombination
must be tailored to the
representation used

10

Indirect representations

• Most problems will have a fixed solution
representation associated with it

• However, sometimes it is beneficial to evolve
solutions using a different representation and
then transform them to do the evaluation

11

Expanding the analogy
Optimization Biology
Candidate solution Individual

Representation used in the EA Genotype, chromosome

Problem-defined representation Phenotype

Position/element of the genotype Locus, gene

Old solution Parent

New solution Offspring

Solution quality Fitness

Random displacements added to offspring Mutation

Search strategy Mutation rate, gene robustness

A set of solutions Population

12

Binary representation operators

13

0 1 1 0 1 0 0 0

Bit flip mutation

• Each bit is inverted with a probability 𝑝𝑚

14

0 1 1 0 1 0 0 0

0 0 1 1 1 0 1 1

1 1 0 0 0 1 1 1

N-point crossover

• 𝑁 random points in the genotype is chosen
• At each point the source parent changes

15

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0

Uniform crossover

• Which parent to inherit from is chosen randomly for
each position

• Identical to discrete recombination

16

0 1 0 0 1 0 1 1

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0

1 0 1 1 0 1 0 0

Binary coding of integers

• Encoding integers as blocks of a binary string
has been quite common
– Keeps the analogy to DNA clean
– Problematic because mutations are not local

• Small changes to the solution are not more probable
• The result of flipping a single bit varies enormously with

bit position and the value of all bits that encode the
same integer

17

Integer representation operators

• Can use the same crossover operators as
the binary representation

18

0 5 8 3 1 3 7 5

Random reset mutation

• Each element is reset with probability 𝑝𝑚 to a
random number in the range

19

0 5 8 3 1 3 7 5

0 7 8 4 1 3 8 1

Creep mutation

• Adds a small value to each element with
probability 𝑝𝑚

20

0 5 8 3 1 3 7 5

0 6 8 2 1 3 8 4

Integer coding of symbols

• Sometimes a vector of symbols with
no clear order is the most
reasonable representation choice

• In such cases, the symbols are
usually enumerated and treated as
integers, but without using the creep
mutation

Symbol Value
N 0
E 1
S 2
W 3

21

Real-valued representation operators

22

0.1 3.3 1.7 3.4 7.2 5.9

Uniform mutation

• Each element has a probability 𝑝𝑚 of being
replaced with a number from some range

23

0.1 3.3 1.7 3.4 7.2 5.9

0.1 3.3 6.1 3.4 5.0 5.9

Arithmetic recombination

• Makes a copy of one of the parents 𝑥 and 𝑦

• Picks one or more random positions 𝑘 and replaces
those elements with the interpolation 𝛼𝑥𝑘 +
1 − 𝛼 𝑦𝑘, where 𝛼 is either a fixed number or a

random variable.

• Intermediate recombination: 𝛼 is 0.5 for all 𝑘

24

Single arithmetic recombination

• Arithmetic recombination is applied to only
one 𝑘

25

Parent B

𝑥1

𝑥2 Possible offspring

Parent A
𝑥3

Whole arithmetic recombination

• Arithmetic recombination is applied with the
same 𝛼 to all 𝑘

26

Parent B

𝑥1

𝑥2 Possible offspring

Parent A
𝑥3

Permutation representation

• Special mutation/recombination operators
– Each item should appear once and only once
– Result should be “close” to the original solution(s)

27

Swap Mutation

• Two random elements are swapped
• In some variants neighbors are always chosen

28

1 2 3 4 5 6 7 8

1 5 3 4 2 6 7 8

Insert mutation

• Two random elements are picked
• The second is placed right after the first

29

1 2 3 4 5 6 7 8

1 2 5 3 4 6 7 8

Scramble & invert mutation

• Two random points are selected
• The order of the elements in between is scrambled

(scramble mutation) or reversed (invert mutation)

30

1 2 3 4 5 6 7 8

1 2 5 4 3 6 7 8 1 5 4 3 2 6 7 8

Partially mapped crossover (PMX)

• Two random points are chosen
• All elements between the points in parent A

are copied to the offspring

31

4 5 6 7

3 4 5 6 7 8 1 2 7 8 2 6 5 1 4 3 A B

Partially mapped crossover (PMX)

• For each element x in parent B between those
points that is not in parent A
– Place it in the position in B of the element with the

same position in A as x has in B

32

4 5 6 7 8

3 4 5 6 7 8 1 2 7 8 2 6 5 1 4 3 A B

Partially mapped crossover (PMX)

• For each element x in parent B between those
points that is not in parent A
– Place it in the position in B of the element with the

same position in A as x has in B
– If that position is occupied, do one more redirection

33

2 4 5 6 7 8

3 4 5 6 7 8 1 2 7 8 2 6 5 1 4 3 A B

Partially mapped crossover (PMX)

• Finally, the missing elements are copied from
their places in parent B

34

2 4 5 6 7 1 8 3

3 4 5 6 7 8 1 2 7 8 2 6 5 1 4 3 A B

Edge crossover

• Heuristic to preserve as many edges as
possible

def edge_xo(PA, PB, N):

 e = construct_edge_table()

 k = random(N)

 for I in range(1, N):

 X.append(k)

 e.remove(k)

 if e.empty(k): k = reverse(X)[-1]

 if e.empty(k): k = draw(1,e.remaining())

 else:

 k = e.pick_common(k) or draw(1, e.pick_shortest(k))

 return X

35

Order crossover

• Two random points are chosen
• All elements between the points in parent A

are copied to the offspring

36

4 5 6 7

3 4 5 6 7 8 1 2 7 8 2 6 5 1 4 3 A B

Order crossover

• The rest of the elements are copied from
parent B in the order starting from the second
random point

37

2 4 5 6 7 1 3 8

3 4 5 6 7 8 1 2 7 8 2 6 5 1 4 3 A B

Cycle crossover

• Identify first cycle
• Copy from parent A and B to offspring A and B

38

3 4 5 6 7 8 1 2

7 8 2 6 5 1 4 3

B

A

3 5 7 2

7 2 5 3

B

A

Cycle crossover

• Identify next cycle
• Copy from parent A and B to offspring B and A

39

3 4 5 6 7 8 1 2

7 8 2 6 5 1 4 3

B

A

3 8 5 7 1 4 2

7 4 2 5 8 1 3

Cycle crossover

• Identify last cycle
• Copy from parent A and B to offspring A and B

40

3 4 5 6 7 8 1 2

7 8 2 6 5 1 4 3

B

A

3 8 5 6 7 1 4 2

7 4 2 6 5 8 1 3

Tree representation operators

41

+

*

2 x

4 2𝑥 + 4

Tree mutation

• Take a random node and replace it by a new
randomly generated subtree

42

+

*

2 x

4

+

*

2 x

*

x x

2𝑥 + 4 2𝑥 + 𝑥2

Tree crossover

• Take one random node from each parent
and exchange them

43

+

*

2 x

4

+

*

2 x

*

x x

+

x

2 x

4

+

*

2 x

*

* x

Bloat in tree representations

• Larger trees will have greater fitness on
average in most cases

• Without any active countermeasures the
population will tend to grow indefinitely

44

2 x

+

*

2 x

*

* x

	Biologically inspired computing - Lecture 3�
	This lecture
	Optimization problems
	Real-valued representations
	Binary representation
	Integer representation
	Permutation representation
	Tree representation
	Representations
	Indirect representations
	Expanding the analogy
	Binary representation operators
	Bit flip mutation
	N-point crossover
	Uniform crossover
	Binary coding of integers
	Integer representation operators
	Random reset mutation
	Creep mutation
	Integer coding of symbols
	Real-valued representation operators
	Uniform mutation
	Arithmetic recombination
	Single arithmetic recombination
	Whole arithmetic recombination
	Permutation representation
	Swap Mutation
	Insert mutation
	Scramble & invert mutation
	Partially mapped crossover (PMX)
	Partially mapped crossover (PMX)
	Partially mapped crossover (PMX)
	Partially mapped crossover (PMX)
	Edge crossover
	Order crossover
	Order crossover
	Cycle crossover
	Cycle crossover
	Cycle crossover
	Tree representation operators
	Tree mutation
	Tree crossover
	Bloat in tree representations

