

Biologically inspired computing - Lecture 3

Representations

(Genetic algorithms & Genetic programming)

This lecture

- Representations
 - Recombination
 - Mutation

Optimization problems

- Continuous optimization
- 0-1 knapsack problem
- Other knapsack problems
- Travelling salesman problem
- Task solving problems

Real-valued representations

- As shown in the previous lecture
 - Represents continuous solution spaces
 - The solution parameters are often accompanied by strategy parameters for adaptive normal distribution-based mutation

Binary representation

- The representation used in the simple genetic algorithm (SGA)
 - Directly inspired by low-level encoding in DNA
 - Uses a binary (0,1) coding instead of the quaternary (G,T,A,C) coding used in nature

0 1 1 0 1 0 0

Integer representation

Each element is directly coded as an integer
Usually restricted to some pre-defined ranges

Permutation representation

- Used to solve problems like the travelling salesman
 - Known set of actions (go to town X)
 - Want to optimize their sequence

Tree representation

- Tree representations of programs or arithmetic expressions
 - Mainly used in genetic programming

Representations

```
def evolve():
P.x = initialize_population()
P.fitness = evaluate(P.x)
while not_done():
    Q.x = reproduce(P)
    Q.x = mutate(Q.x)
    Q.fitness = evaluate(Q.x)
    P = survival(P,Q)
    return best(P).x
```

- The central concepts in evolutionary algorithms are independent of representation
- Mutation and recombination must be tailored to the representation used

Indirect representations

- Most problems will have a fixed solution representation associated with it
- However, sometimes it is beneficial to evolve solutions using a different representation and then transform them to do the evaluation

Expanding the analogy

Optimization	Biology
Candidate solution	Individual
Representation used in the EA	Genotype, chromosome
Problem-defined representation	Phenotype
Position/element of the genotype	Locus, gene
Old solution	Parent
New solution	Offspring
Solution quality	Fitness
Random displacements added to offspring	Mutation
Search strategy	Mutation rate, gene robustness
A set of solutions	Population

Binary representation operators

0 1 1 0 1 0 0

Bit flip mutation

• Each bit is inverted with a probability p_m

N-point crossover

- N random points in the genotype is chosen
- At each point the source parent changes

Uniform crossover

- Which parent to inherit from is chosen randomly for each position
- Identical to discrete recombination

Binary coding of integers

- Encoding integers as blocks of a binary string has been quite common
 - Keeps the analogy to DNA clean
 - Problematic because mutations are not local
 - Small changes to the solution are not more probable
 - The result of flipping a single bit varies enormously with bit position and the value of all bits that encode the same integer

Integer representation operators

 Can use the same crossover operators as the binary representation

Random reset mutation

• Each element is reset with probability p_m to a random number in the range

Creep mutation

• Adds a small value to each element with probability p_m

Integer coding of symbols

- Sometimes a vector of symbols with no clear order is the most reasonable representation choice
- In such cases, the symbols are usually enumerated and treated as integers, but without using the creep mutation

Symbol	Value		
Ν	0		
Е	1		
S	2		
W	3		

Real-valued representation operators

0.1 3.3	1.7	3.4	7.2	5.9
---------	-----	-----	-----	-----

Uniform mutation

• Each element has a probability p_m of being replaced with a number from some range

Arithmetic recombination

- Makes a copy of one of the parents *x* and *y*
- Picks one or more random positions k and replaces those elements with the interpolation $\alpha x_k + (1 - \alpha)y_k$, where α is either a fixed number or a random variable.
- Intermediate recombination: α is 0.5 for all k

Single arithmetic recombination

• Arithmetic recombination is applied to only one *k*

Whole arithmetic recombination

• Arithmetic recombination is applied with the same α to all k

Permutation representation

- Special mutation/recombination operators
 - Each item should appear once and only once
 - Result should be "close" to the original solution(s)

Swap Mutation

- Two random elements are swapped
- In some variants neighbors are always chosen

Insert mutation

- Two random elements are picked
- The second is placed right after the first

Scramble & invert mutation

- Two random points are selected
- The order of the elements in between is scrambled (scramble mutation) or reversed (invert mutation)

- Two random points are chosen
- All elements between the points in parent A are copied to the offspring

- For each element x in parent B between those points that is not in parent A
 - Place it in the position in B of the element with the same position in A as x has in B

- For each element x in parent B between those points that is not in parent A
 - Place it in the position in B of the element with the same position in A as x has in B
 - If that position is occupied, do one more redirection

• Finally, the missing elements are copied from their places in parent B

Edge crossover

 Heuristic to preserve as many edges as possible

```
def edge_xo(PA, PB, N):
e = construct_edge_table()
k = random(N)
for I in range(1, N):
    X.append(k)
    e.remove(k)
    if e.empty(k): k = reverse(X)[-1]
    if e.empty(k): k = draw(1, e.remaining())
    else:
        k = e.pick_common(k) or draw(1, e.pick_shortest(k))
    return X
```

Order crossover

- Two random points are chosen
- All elements between the points in parent A are copied to the offspring

Order crossover

 The rest of the elements are copied from parent B in the order starting from the second random point

Cycle crossover

- Identify first cycle
- Copy from parent A and B to offspring A and B

Cycle crossover

- Identify next cycle
- Copy from parent A and B to offspring B and A

Cycle crossover

- Identify last cycle
- Copy from parent A and B to offspring A and B

Tree representation operators

41

Tree mutation

• Take a random node and replace it by a new randomly generated subtree

Tree crossover

• Take one random node from each parent and exchange them

Bloat in tree representations

- Larger trees will have greater fitness on average in most cases
- Without any active countermeasures the population will tend to grow indefinitely

