
Biologically inspired computing - Lecture 3 
 

Representations 
 
(Genetic algorithms & Genetic programming) 



This lecture 

• Representations  
– Recombination 
– Mutation 
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Optimization problems 

• Continuous optimization 

• 0-1 knapsack problem 

• Other knapsack problems 

• Travelling salesman problem 

• Task solving problems 
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Real-valued representations 

• As shown in the previous lecture 
– Represents continuous solution spaces 
– The solution parameters are often accompanied 

by strategy parameters for adaptive normal 
distribution-based mutation 
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Binary representation 

• The representation used in the simple 
genetic algorithm (SGA) 
– Directly inspired by low-level encoding in DNA 
– Uses a binary (0,1) coding instead of the 

quaternary (G,T,A,C) coding used in nature 
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Integer representation 

• Each element is directly coded as an integer 
– Usually restricted to some pre-defined ranges 
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Permutation representation 

• Used to solve problems like the travelling 
salesman 
– Known set of actions (go to town X) 
– Want to optimize their sequence 
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Tree representation 

• Tree representations of programs or 
arithmetic expressions 
– Mainly used in genetic programming 
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Representations 
 
def evolve(): 

 P.x = initialize_population() 

 P.fitness = evaluate(P.x) 

 while not_done(): 

  Q.x = reproduce(P) 

  Q.x = mutate(Q.x) 

  Q.fitness = evaluate(Q.x) 

  P = survival(P,Q) 

 return best(P).x 

 

• The central concepts in 
evolutionary algorithms are 
independent of representation 
 

• Mutation and recombination 
must be tailored to the 
representation used 
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Indirect representations 

• Most problems will have a fixed solution 
representation associated with it 
 

• However, sometimes it is beneficial to evolve 
solutions using a different representation and 
then transform them to do the evaluation 
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Expanding the analogy 
Optimization Biology 
Candidate solution Individual 

Representation used in the EA Genotype, chromosome 

Problem-defined representation Phenotype 

Position/element of the genotype Locus, gene 

Old solution Parent 

New solution Offspring 

Solution quality Fitness 

Random displacements added to offspring Mutation 

Search strategy Mutation rate, gene robustness 

A set of solutions Population 
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Binary representation operators 
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Bit flip mutation 

 
• Each bit is inverted with a probability 𝑝𝑚 
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1 1 0 0 0 1 1 1 

N-point crossover 

• 𝑁 random points in the genotype is chosen 
• At each point the source parent changes 
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Uniform crossover 

• Which parent to inherit from is chosen randomly for 
each position 

• Identical to discrete recombination 
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Binary coding of integers 

• Encoding integers as blocks of a binary string 
has been quite common 
– Keeps the analogy to DNA clean 
– Problematic because mutations are not local 

• Small changes to the solution are not more probable 
• The result of flipping a single bit varies enormously with 

bit position and the value of all bits that encode the 
same integer 
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Integer representation operators 

• Can use the same crossover operators as 
the binary representation 
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Random reset mutation 

• Each element is reset with probability 𝑝𝑚 to a 
random number in the range 
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Creep mutation 

• Adds a small value to each element with 
probability 𝑝𝑚 
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Integer coding of symbols 

• Sometimes a vector of symbols with 
no clear order is the most 
reasonable representation choice 
 

• In such cases, the symbols are 
usually enumerated and treated as 
integers, but without using the creep 
mutation 

Symbol Value 
N 0 
E 1 
S 2 
W 3 
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Real-valued representation operators 
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Uniform mutation 

• Each element has a probability 𝑝𝑚 of being 
replaced with a number from some range 
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Arithmetic recombination 

• Makes a copy of one of the parents 𝑥 and 𝑦 
 

• Picks one or more random positions 𝑘 and replaces 
those elements with the interpolation 𝛼𝑥𝑘 +
1 − 𝛼 𝑦𝑘, where 𝛼 is either a fixed number or a 

random variable.  
 

• Intermediate recombination: 𝛼 is 0.5 for all 𝑘 
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Single arithmetic recombination 

• Arithmetic recombination is applied to only 
one 𝑘 
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Whole arithmetic recombination 

• Arithmetic recombination is applied with the 
same 𝛼 to all 𝑘 
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Permutation representation 

• Special mutation/recombination operators 
– Each item should appear once and only once 
– Result should be “close” to the original solution(s) 
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Swap Mutation 

• Two random elements are swapped 
• In some variants neighbors are always chosen 
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Insert mutation 

• Two random elements are picked 
• The second is placed right after the first 
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Scramble & invert mutation 

• Two random points are selected 
• The order of the elements in between is scrambled 

(scramble mutation) or reversed (invert mutation) 

30 

1 2 3 4 5 6 7 8 

1 2 5 4 3 6 7 8 1 5 4 3 2 6 7 8 



Partially mapped crossover (PMX) 

• Two random points are chosen 
• All elements between the points in parent A 

are copied to the offspring 
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Partially mapped crossover (PMX) 

• For each element x in parent B between those 
points that is not in parent A 
– Place it in the position in B of the element with the 

same position in A as x has in B 
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Partially mapped crossover (PMX) 

• For each element x in parent B between those 
points that is not in parent A 
– Place it in the position in B of the element with the 

same position in A as x has in B 
– If that position is occupied, do one more redirection 
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Partially mapped crossover (PMX) 

• Finally, the missing elements are copied from 
their places in parent B 
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Edge crossover 

• Heuristic to preserve as many edges as 
possible 

 

def edge_xo(PA, PB, N): 

 e = construct_edge_table() 

 k = random(N) 

 for I in range(1, N): 

  X.append(k) 

  e.remove(k) 

  if e.empty(k): k = reverse(X)[-1] 

  if e.empty(k): k = draw(1,e.remaining()) 

  else:  

   k = e.pick_common(k) or draw(1, e.pick_shortest(k)) 

 return X 
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Order crossover 

• Two random points are chosen 
• All elements between the points in parent A 

are copied to the offspring 
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Order crossover 

• The rest of the elements are copied from 
parent B in the order starting from the second 
random point 
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Cycle crossover 

• Identify first cycle 
• Copy from parent A and B to offspring A and B 
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Cycle crossover 

• Identify next cycle 
• Copy from parent A and B to offspring B and A 
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Cycle crossover 

• Identify last cycle 
• Copy from parent A and B to offspring A and B 
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Tree representation operators 
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Tree mutation 

• Take a random node and replace it by a new 
randomly generated subtree 
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Tree crossover 

• Take one random node from each parent 
and exchange them 
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Bloat in tree representations 

• Larger trees will have greater fitness on 
average in most cases 
 

• Without any active countermeasures the 
population will tend to grow indefinitely  
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