

UiO : Department of Informatics
University of Oslo

Biologically inspired computing - Lecture 3
Representations
(Genetic algorithms \& Genetic programming)

UiO : Department of Informatics

Optimization problems

- Continuous optimization
- 0-1 knapsack problem
- Other knapsack problems
- Travelling salesman problem
- Task solving problems

UiO: Department of Informatics
University of Oslo

This lecture

- Representations
- Recombination
- Mutation

```
UiO: Department of Informatics
iversity of oslo
```


Real-valued representations

- As shown in the previous lecture
- Represents continuous solution spaces
- The solution parameters are often accompanied by strategy parameters for adaptive normal distribution-based mutation

UiO: Department of Informatics
niversity of Oslo

Binary representation

- The representation used in the simple genetic algorithm (SGA)
- Directly inspired by low-level encoding in DNA
- Uses a binary $(0,1)$ coding instead of the quaternary ($\mathrm{G}, \mathrm{T}, \mathrm{A}, \mathrm{C}$) coding used in nature

\section*{| 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |}

UiO : Department of Informatics

Permutation representation

- Used to solve problems like the travelling salesman
- Known set of actions (go to town X)
- Want to optimize their sequence

UiO: Department of Informatics
University of Oslo

Integer representation

- Each element is directly coded as an integer - Usually restricted to some pre-defined ranges

UiO: Department of Informatics

Tree representation

- Tree representations of programs or arithmetic expressions
- Mainly used in genetic programming

UiO: Department of Informatics
niversity of osio

Representations

def evol ve() :
P. $x=i$ nitialize_populationd
P.fitness $=$ eval uate(P. x)
while not_done():
$Q \cdot x=$ mutate ($Q \times \times$)
$x=$ mut ate $Q \times \times$
= survival (P, Q)
return best(P). . x

- The central concepts in evolutionary algorithms are independent of representation
- Mutation and recombination must be tailored to the representation used

UiO: Department of Informatics
University of Oslo

Indirect representations

- Most problems will have a fixed solution representation associated with it
- However, sometimes it is beneficial to evolve solutions using a different representation and then transform them to do the evaluation

```
UiO: Department of Informatics
```

Expanding the analogy

```
JiO: Department of Informatics
University of oslo
```

Binary representation operators

Optimization	Biology
Candidate solution	Individual
Representation used in the EA	Genotype, chromosome
Problem-defined representation	Phenotype
Position/element of the genotype	Locus, gene
Old solution	Parent
New solution	Offspring
Solution quality	Fitness
Random displacements added to offspring	Mutation
Search strategy	Mutation rate, gene robustness
A set of solutions	Population

\square | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

UiO: Department of Informatics
aiversity of osio

Bit flip mutation

- Each bit is inverted with a probability p_{m}

UiO : Department of Informatics
University of Oslo

N-point crossover

- N random points in the genotype is chosen
- At each point the source parent changes
\square


```
UiO: Department of Informatics
    University of Oslo
```


Uniform crossover

Binary coding of integers

- Encoding integers as blocks of a binary string has been quite common each position
- Identical to discrete recombination
- Keeps the analogy to DNA clean
- Problematic because mutations are not local
- Small changes to the solution are not more probable
- The result of flipping a single bit varies enormously with bit position and the value of all bits that encode the same integer

UiO: Department of Informatics
niversity of Oslo

Integer representation operators

- Can use the same crossover operators as the binary representation

UiO: Department of Informatics
University of Oslo

Random reset mutation

- Each element is reset with probability p_{m} to a random number in the range

UiO: Department of Informatics
niversity of Oslo

Integer coding of symbols

- Sometimes a vector of symbols with no clear order is the most reasonable representation choice
- In such cases, the symbols are usually enumerated and treated as integers, but without using the creep mutation

0	5	8	3	1	3	7	5

0	6	8	2	1	3	8	4

UiO: Department of Informatics
niversity of osio
Real-valued representation operators

UiO: Department of Informatics
University of Oslo

Uniform mutation

- Each element has a probability p_{m} of being replaced with a number from some range

\qquad

```
UiO: Department of Informatics
University of Oslo
```


Arithmetic recombination

Single arithmetic recombination

- Arithmetic recombination is applied to only one k
- Picks one or more random positions k and replaces those elements with the interpolation $\alpha x_{k}+$ $(1-\alpha) y_{k}$, where α is either a fixed number or a random variable
- Intermediate recombination: α is 0.5 for all k

UiO: Department of Informatics
University of Osio

Whole arithmetic recombination

- Arithmetic recombination is applied with the same α to all k

UiO: Department of Informatics
University of Oslo

Permutation representation

- Special mutation/recombination operators
- Each item should appear once and only once
- Result should be "close" to the original solution(s)

```
UiO: Department of Informatics
versity of Oslo
```


Insert mutation

- Two random elements are picked
- The second is placed right after the first

UiO: Department of Informatics
 University of Oslo

Scramble \& invert mutation

- Two random points are selected
- The order of the elements in between is scrambled (scramble mutation) or reversed (invert mutation)

1	2	5	4	3	6	7	8	1	5	4	3	2	6	7	8

UiO: Department of Informatics
University of Oslo

Partially mapped crossover (PMX)

- Two random points are chosen
- All elements between the points in parent A are copied to the offspring

| 3 | 4 | 5 | 6 | 7 | 8 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\qquad

```
UiO: Department of Informatics
    niversity of Oslo
```


Partially mapped crossover (PMX)

- For each element x in parent B between those points that is not in parent A
- Place it in the position in B of the element with the same position in A as x has in B

| 3 | 4 | 5 | 6 | 7 | 8 | 1 | 2 | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | 7 | 8 | 2 | 6 | 5 | 1 | 4 | 3 |

UiO: Department of Informatics
iversity of oslo

Partially mapped crossover (PMX)

- For each element x in parent B between those points that is not in parent A
- Place it in the position in B of the element with the same position in A as x has in B
- If that position is occupied, do one more redirection

| 3 | 4 | 5 | 6 | 7 | 8 | 1 | 2 | 7 | 8 | 2 | 6 | 5 | 1 | 4 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 2 | 4 | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 4 | 5 | 6 | 7 | | 8 |

UiO: Department of Informatics
niversity of Osio

Partially mapped crossover (PMX)

- Finally, the missing elements are copied from their places in parent B

| 3 | 4 | 5 | 6 | 7 | 8 | 1 | 2 | 7 | 8 | 2 | 6 | 5 | 1 | 4 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | 2 | 4 | 5 | 6 | 7 | 1 | 8 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Order crossover

- Two random points are chosen
- All elements between the points in parent A are copied to the offspring

3	4	5	6	7	8	1	2	7	8	2	6	5	1	4	3

UiO: Department of Informatics
University of Oslo

Edge crossover

- Heuristic to preserve as many edges as possible
def edge_xo(PA, PB, N):
e = construct_edge_table()
$\mathrm{k}=\mathrm{random} \mathrm{N}$)
(fin inge(1 , N)
e. remove(k)
if e.empty $(k): k=\operatorname{reverse}(x)[-1]$
if e. empty $(k): k=\operatorname{dranc}($, e. remaining()
el se:
k = e. pick_common(k) or aram 1, e. pick_shortest(k))

$$
{ }_{35}
$$

UiO: Department of Informatics

Order crossover

- The rest of the elements are copied from parent B in the order starting from the second random point

UiO : Department of Informatics
: Department of
University of Osio
Cycle crossover

- Identify next cycle
- Copy from parent A and B to offspring B and A

| 3 | 4 | 5 | 6 | 7 | 8 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| 3 | 8 |
| :--- | :--- |

UiO: Department of Informatics
iversity of Oslo
Tree representation operators

Cycle crossover

- Identify last cycle
- Copy from parent A and B to offspring A and B
\square
A

| 3 | 4 | 5 | 6 | 7 | 8 | 1 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |\quad| 3 | 8 |
| :--- | :--- |

UiO: Department of Informatics
University of osio

Tree mutation

- Take a random node and replace it by a new randomly generated subtree

UiO : Department of Informatics
University of Oslo

Tree crossover

- Take one random node from each parent and exchange them

UiO : Department of Informatics

Bloat in tree representations

- Larger trees will have greater fitness on average in most cases
- Without any active countermeasures the population will tend to grow indefinitely

