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Biologically inspired computing - Lecture 3

Representations

(Genetic algorithms & Genetic programming)

This lecture

• Representations 
– Recombination
– Mutation
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Optimization problems

• Continuous optimization

• 0-1 knapsack problem

• Other knapsack problems

• Travelling salesman problem

• Task solving problems
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Real-valued representations

• As shown in the previous lecture
– Represents continuous solution spaces
– The solution parameters are often accompanied 

by strategy parameters for adaptive normal 
distribution-based mutation
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Binary representation

• The representation used in the simple 
genetic algorithm (SGA)
– Directly inspired by low-level encoding in DNA
– Uses a binary (0,1) coding instead of the 

quaternary (G,T,A,C) coding used in nature
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Integer representation

• Each element is directly coded as an integer
– Usually restricted to some pre-defined ranges
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Permutation representation

• Used to solve problems like the travelling 
salesman
– Known set of actions (go to town X)
– Want to optimize their sequence
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Tree representation

• Tree representations of programs or 
arithmetic expressions
– Mainly used in genetic programming
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Representations

def evolve():

P.x = initialize_population()

P.fitness = evaluate(P.x)

while not_done():

Q.x = reproduce(P)

Q.x = mutate(Q.x)

Q.fitness = evaluate(Q.x)

P = survival(P,Q)

return best(P).x

• The central concepts in 
evolutionary algorithms are 
independent of representation

• Mutation and recombination 
must be tailored to the 
representation used
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Indirect representations

• Most problems will have a fixed solution 
representation associated with it

• However, sometimes it is beneficial to evolve 
solutions using a different representation and 
then transform them to do the evaluation
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Expanding the analogy
Optimization Biology
Candidate solution Individual

Representation used in the EA Genotype, chromosome

Problem-defined representation Phenotype

Position/element of the genotype Locus, gene

Old solution Parent

New solution Offspring

Solution quality Fitness

Random displacements added to offspring Mutation

Search strategy Mutation rate, gene robustness

A set of solutions Population
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Binary representation operators
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Bit flip mutation

• Each bit is inverted with a probability 
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N-point crossover

• random points in the genotype is chosen
• At each point the source parent changes
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Uniform crossover

• Which parent to inherit from is chosen randomly for 
each position

• Identical to discrete recombination
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Binary coding of integers

• Encoding integers as blocks of a binary string 
has been quite common
– Keeps the analogy to DNA clean
– Problematic because mutations are not local

• Small changes to the solution are not more probable
• The result of flipping a single bit varies enormously with 

bit position and the value of all bits that encode the 
same integer
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Integer representation operators

• Can use the same crossover operators as 
the binary representation
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Random reset mutation

• Each element is reset with probability to a 
random number in the range
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Creep mutation

• Adds a small value to each element with 
probability 
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Integer coding of symbols

• Sometimes a vector of symbols with 
no clear order is the most 
reasonable representation choice

• In such cases, the symbols are 
usually enumerated and treated as 
integers, but without using the creep 
mutation

Symbol Value
N 0
E 1
S 2
W 3
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Real-valued representation operators
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Uniform mutation

• Each element has a probability of being 
replaced with a number from some range
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Arithmetic recombination

• Makes a copy of one of the parents and 

• Picks one or more random positions and replaces 
those elements with the interpolation 
1 , where is either a fixed number or a 

random variable. 

• Intermediate recombination: is 0.5 for all 
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Single arithmetic recombination

• Arithmetic recombination is applied to only
one 
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Whole arithmetic recombination

• Arithmetic recombination is applied with the 
same to all 
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Parent B

Possible offspring

Parent A

Permutation representation

• Special mutation/recombination operators
– Each item should appear once and only once
– Result should be “close” to the original solution(s)
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Swap Mutation

• Two random elements are swapped
• In some variants neighbors are always chosen
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Insert mutation

• Two random elements are picked
• The second is placed right after the first
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Scramble & invert mutation

• Two random points are selected
• The order of the elements in between is scrambled 

(scramble mutation) or reversed (invert mutation)
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Partially mapped crossover (PMX)

• Two random points are chosen
• All elements between the points in parent A 

are copied to the offspring
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Partially mapped crossover (PMX)

• For each element x in parent B between those 
points that is not in parent A
– Place it in the position in B of the element with the 

same position in A as x has in B
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Partially mapped crossover (PMX)

• For each element x in parent B between those 
points that is not in parent A
– Place it in the position in B of the element with the 

same position in A as x has in B
– If that position is occupied, do one more redirection
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Partially mapped crossover (PMX)

• Finally, the missing elements are copied from 
their places in parent B
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Edge crossover

• Heuristic to preserve as many edges as 
possible

def edge_xo(PA, PB, N):

e = construct_edge_table()

k = random(N)

for I in range(1, N):

X.append(k)

e.remove(k)

if e.empty(k): k = reverse(X)[-1]

if e.empty(k): k = draw(1,e.remaining())

else: 

k = e.pick_common(k) or draw(1, e.pick_shortest(k))

return X
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Order crossover

• Two random points are chosen
• All elements between the points in parent A 

are copied to the offspring
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Order crossover

• The rest of the elements are copied from 
parent B in the order starting from the second 
random point
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Cycle crossover

• Identify first cycle
• Copy from parent A and B to offspring A and B
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Cycle crossover

• Identify next cycle
• Copy from parent A and B to offspring B and A
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Cycle crossover

• Identify last cycle
• Copy from parent A and B to offspring A and B
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Tree representation operators
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Tree mutation

• Take a random node and replace it by a new 
randomly generated subtree
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Tree crossover

• Take one random node from each parent 
and exchange them
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Bloat in tree representations

• Larger trees will have greater fitness on 
average in most cases

• Without any active countermeasures the 
population will tend to grow indefinitely 
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