
16.09.2014

1

Biologically inspired computing - Lecture 3

Representations

(Genetic algorithms & Genetic programming)

This lecture

• Representations 
– Recombination
– Mutation

3

Optimization problems

• Continuous optimization

• 0-1 knapsack problem

• Other knapsack problems

• Travelling salesman problem

• Task solving problems

4

Real-valued representations

• As shown in the previous lecture
– Represents continuous solution spaces
– The solution parameters are often accompanied 

by strategy parameters for adaptive normal 
distribution-based mutation

5

0.1 3.3 1.7 3.4 7.2 5.9



16.09.2014

2

Binary representation

• The representation used in the simple 
genetic algorithm (SGA)
– Directly inspired by low-level encoding in DNA
– Uses a binary (0,1) coding instead of the 

quaternary (G,T,A,C) coding used in nature

6

0 1 1 0 1 0 0 0

Integer representation

• Each element is directly coded as an integer
– Usually restricted to some pre-defined ranges

7

0 5 8 3 1 3 7 5

Permutation representation

• Used to solve problems like the travelling 
salesman
– Known set of actions (go to town X)
– Want to optimize their sequence

8

Tree representation

• Tree representations of programs or 
arithmetic expressions
– Mainly used in genetic programming

9

+

*

2 x

4 2 4



16.09.2014

3

Representations

def evolve():

P.x = initialize_population()

P.fitness = evaluate(P.x)

while not_done():

Q.x = reproduce(P)

Q.x = mutate(Q.x)

Q.fitness = evaluate(Q.x)

P = survival(P,Q)

return best(P).x

• The central concepts in 
evolutionary algorithms are 
independent of representation

• Mutation and recombination 
must be tailored to the 
representation used

10

Indirect representations

• Most problems will have a fixed solution 
representation associated with it

• However, sometimes it is beneficial to evolve 
solutions using a different representation and 
then transform them to do the evaluation

11

Expanding the analogy
Optimization Biology
Candidate solution Individual

Representation used in the EA Genotype, chromosome

Problem-defined representation Phenotype

Position/element of the genotype Locus, gene

Old solution Parent

New solution Offspring

Solution quality Fitness

Random displacements added to offspring Mutation

Search strategy Mutation rate, gene robustness

A set of solutions Population

12

Binary representation operators

13

0 1 1 0 1 0 0 0



16.09.2014

4

Bit flip mutation

• Each bit is inverted with a probability 

14

0 1 1 0 1 0 0 0

0 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1

N-point crossover

• random points in the genotype is chosen
• At each point the source parent changes

15

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0

0 0 1 1 1 0 0 0

Uniform crossover

• Which parent to inherit from is chosen randomly for 
each position

• Identical to discrete recombination

16

0 1 0 0 1 0 1 1

1 1 1 1 1 1 1 10 0 0 0 0 0 0 0

1 0 1 1 0 1 0 0

Binary coding of integers

• Encoding integers as blocks of a binary string 
has been quite common
– Keeps the analogy to DNA clean
– Problematic because mutations are not local

• Small changes to the solution are not more probable
• The result of flipping a single bit varies enormously with 

bit position and the value of all bits that encode the 
same integer

17



16.09.2014

5

Integer representation operators

• Can use the same crossover operators as 
the binary representation

18

0 5 8 3 1 3 7 5

Random reset mutation

• Each element is reset with probability to a 
random number in the range

19

0 5 8 3 1 3 7 5

0 7 8 4 1 3 8 1

Creep mutation

• Adds a small value to each element with 
probability 

20

0 5 8 3 1 3 7 5

0 6 8 2 1 3 8 4

Integer coding of symbols

• Sometimes a vector of symbols with 
no clear order is the most 
reasonable representation choice

• In such cases, the symbols are 
usually enumerated and treated as 
integers, but without using the creep 
mutation

Symbol Value
N 0
E 1
S 2
W 3

21



16.09.2014

6

Real-valued representation operators

22

0.1 3.3 1.7 3.4 7.2 5.9

Uniform mutation

• Each element has a probability of being 
replaced with a number from some range

23

0.1 3.3 1.7 3.4 7.2 5.9

0.1 3.3 6.1 3.4 5.0 5.9

Arithmetic recombination

• Makes a copy of one of the parents and 

• Picks one or more random positions and replaces 
those elements with the interpolation 
1 , where is either a fixed number or a 

random variable. 

• Intermediate recombination: is 0.5 for all 

24

Single arithmetic recombination

• Arithmetic recombination is applied to only
one 

25

Parent B

Possible offspring

Parent A



16.09.2014

7

Whole arithmetic recombination

• Arithmetic recombination is applied with the 
same to all 

26

Parent B

Possible offspring

Parent A

Permutation representation

• Special mutation/recombination operators
– Each item should appear once and only once
– Result should be “close” to the original solution(s)

27

Swap Mutation

• Two random elements are swapped
• In some variants neighbors are always chosen

28

1 2 3 4 5 6 7 8

1 5 3 4 2 6 7 8

Insert mutation

• Two random elements are picked
• The second is placed right after the first

29

1 2 3 4 5 6 7 8

1 2 5 3 4 6 7 8



16.09.2014

8

Scramble & invert mutation

• Two random points are selected
• The order of the elements in between is scrambled 

(scramble mutation) or reversed (invert mutation)

30

1 2 3 4 5 6 7 8

1 2 5 4 3 6 7 8 1 5 4 3 2 6 7 8

Partially mapped crossover (PMX)

• Two random points are chosen
• All elements between the points in parent A 

are copied to the offspring

31

4 5 6 7

3 4 5 6 7 8 1 2 7 8 2 6 5 1 4 3A B

Partially mapped crossover (PMX)

• For each element x in parent B between those 
points that is not in parent A
– Place it in the position in B of the element with the 

same position in A as x has in B

32

4 5 6 7 8

3 4 5 6 7 8 1 2 7 8 2 6 5 1 4 3A B

Partially mapped crossover (PMX)

• For each element x in parent B between those 
points that is not in parent A
– Place it in the position in B of the element with the 

same position in A as x has in B
– If that position is occupied, do one more redirection

33

2 4 5 6 7 8

3 4 5 6 7 8 1 2 7 8 2 6 5 1 4 3A B



16.09.2014

9

Partially mapped crossover (PMX)

• Finally, the missing elements are copied from 
their places in parent B

34

2 4 5 6 7 1 8 3

3 4 5 6 7 8 1 2 7 8 2 6 5 1 4 3A B

Edge crossover

• Heuristic to preserve as many edges as 
possible

def edge_xo(PA, PB, N):

e = construct_edge_table()

k = random(N)

for I in range(1, N):

X.append(k)

e.remove(k)

if e.empty(k): k = reverse(X)[-1]

if e.empty(k): k = draw(1,e.remaining())

else: 

k = e.pick_common(k) or draw(1, e.pick_shortest(k))

return X

35

Order crossover

• Two random points are chosen
• All elements between the points in parent A 

are copied to the offspring

36

4 5 6 7

3 4 5 6 7 8 1 2 7 8 2 6 5 1 4 3A B

Order crossover

• The rest of the elements are copied from 
parent B in the order starting from the second 
random point

37

2 4 5 6 7 1 3 8

3 4 5 6 7 8 1 2 7 8 2 6 5 1 4 3A B



16.09.2014

10

Cycle crossover

• Identify first cycle
• Copy from parent A and B to offspring A and B

38

3 4 5 6 7 8 1 2

7 8 2 6 5 1 4 3

B

A

3 5 7 2

7 2 5 3

B

A

Cycle crossover

• Identify next cycle
• Copy from parent A and B to offspring B and A

39

3 4 5 6 7 8 1 2

7 8 2 6 5 1 4 3

B

A

3 8 5 7 1 4 2

7 4 2 5 8 1 3

Cycle crossover

• Identify last cycle
• Copy from parent A and B to offspring A and B

40

3 4 5 6 7 8 1 2

7 8 2 6 5 1 4 3

B

A

3 8 5 6 7 1 4 2

7 4 2 6 5 8 1 3

Tree representation operators

41

+

*

2 x

4 2 4



16.09.2014

11

Tree mutation

• Take a random node and replace it by a new 
randomly generated subtree

42

+

*

2 x

4

+

*

2 x

*

x x

2 4 2

Tree crossover

• Take one random node from each parent 
and exchange them

43

+

*

2 x

4

+

*

2 x

*

x x

+

x

2 x

4

+

*

2 x

*

* x

Bloat in tree representations

• Larger trees will have greater fitness on 
average in most cases

• Without any active countermeasures the 
population will tend to grow indefinitely 

44

2 x

+

*

2 x

*

* x


