

UiO Department of Informatics
University of Oslo

Kyrre Glette – kyrrehg@ifi
INF3490 – Swarm Intelligence
Particle Swarm Optimization

UiO Department of Informatics
University of Oslo

Overview

- Introduction to swarm intelligence principles
- Particle Swarm Optimization (PSO)

Swarms in nature

http://youtu.be/kdECYXdW9Tc

Fish, birds, ants, termites, ...

Key features

- Simple local rules
- Local interaction
- Decentralized control
- Complex global behavior
 - Difficult to predict from observing the local rules
 - Emergent behavior

UiO • Department of Informatics University of Oslo

Flocking model – "boids"

Separation – avoid crowding

Alignment – steer towards average heading

Cohesion – steer towards average position

Only considering the boid's neighborhood

Result - boids

Original: http://youtu.be/86iQiV3-3IA

Netlogo: "Flocking 3D Alternate" model

UiO Department of Informatics University of Oslo

Application: Computer graphics

http://youtu.be/-jF5sAqBp4w

Applications in bio-inspired computing

- Particle swarm optimization
 - Parameter optimization
- Ant colony optimization
 - Find shortest paths through graph by using artificial pheromones
- Artificial immune systems
 - Classification, anomaly detection
- Swarm robotics
 - Achieve complex behavior in robotic swarms through simple local rules

Particle Swarm Optimization (PSO)

- Optimizes a population of solutions
 - A swarm of particles

Principle

- Evaluate your present position
- Compare it to your previous best and neighborhood best
- Imitate self and others

Simplified PSO algorithm

- For each particle i in the swarm
 - Calculate fitness
 - Update local best
 - Find neighborhood best
 - Update velocity
 - Update position

PSO update formulas

For each dimension *d* in particle *i*:

1. Velocity update

$$v_{id}^{(t+1)} \leftarrow \alpha v_{id}^{(t)} + U(0,\beta) \left(p_{id} - x_{id}^{(t)} \right) + U(0,\beta) \left(p_{gd} - x_{id}^{(t)} \right)$$
inertia
$$\text{direction} \\ \text{personal best}$$

$$\text{direction} \\ \text{neighborhood} \\ \text{best}$$

2. Position update

$$x_{id}^{(t+1)} \leftarrow x_{id}^{(t)} + v_{id}^{(t+1)}$$

What happens?

- A particle circles around in a region centered between the bests of itself and its neighbors
- The bests are updated and the particles cluster around better regions in the search space
- The way good solutions are propagated depends on how we define the neighborhood

Neighborhood topologies

- gbest: all particles are connected
 - Every particle gets information about the global best value
 - Can converge (too) fast
- Ibest: connected to K nearest neighbors in a wrapped population array
 - Slower convergence, depending on K
 - More areas are searched in parallel
- Several other topologies exist

PSO parameters

- Particle:
 - Usually a D-dimensional vector of real values
 - Binary variant exists
- Swarm size: usually 10 < N < 100
- Recommended $\alpha = 0.7298$
- Recommended $\beta = 1.4961$

Parameter experimentation

- NetLogo
 - Particle SwarmOptimization model
- Model uses gbest neighborhood
- Download and try
 - Or with java in the browser

Advantages of PSO

- Few parameters
- Gradient free
- Decentralized control (depends on variant.)
- Simple to understand basic principle
- Simple to implement

PSO vs. Evolutionary Algorithms

- Both are population based
- PSO: No selection all particles survive
- Information exchange between solutions:
 - PSO: neighborhood best
 - GA: crossover (and selection)

PSO applications

- Similar application areas as EAs
 - Most optimization problems
- Image and video analysis
- Electricity network optimization
- Neural networks

• ...

Swarm robotics

- Swarmbot project
 - http://youtu.be/h-2D-zIU-DQ
- Kilobot project
 - http://youtu.be/GnyDAuqorGo
- TERMES project
 - Termite-inspired swarm assembly robots
 - http://youtu.be/tCJMGQJnodc

UiO Department of Informatics
University of Oslo

Kyrre Glette – kyrrehg@ifi
INF3490 – Evolvable Hardware
Cartesian Genetic Programming

UiO • Department of Informatics
University of Oslo

Overview

- Introduction to Evolvable Hardware (EHW)
- Cartesian Genetic Programming
- Applications of EHW

Evolvable Hardware (EHW)

 Hardware systems designed/ modified automatically by EAs

 A string of symbols/bits is evolved by an EA and translated into a HW system

- Offline EHW
 - Solutions are simulated in a PC
- Online EHW
 - Solutions are tested on target HW

EHW

- FPGA
 - Reconfigurable hardware chip
 - Useful for online EHW
- On-chip evolution
 - EA running on the target chip, together with solutions
- Run-time adaptable EHW
 - Evolution can modify the system during operation

Applications of EHW

- Pattern recognition / classification circuits
- Digital image filters
- Evolution of analog circuits
- Cache mapping functions
- On-the-fly compression for printers
- Spacecraft antenna

UiO Department of Informatics University of Oslo

CARTESIAN GENETIC PROGRAMMING

Cartesian Genetic Programming (CGP)

- A type of Genetic Programming
- Allows restrictions compared to general GP:
 - Integer genome
 - Tree nodes are mapped to a grid
 - Connectivity can be restricted
- Popular in Evolvable Hardware applications
 - But can be used for many other things as well

Example structure: Digital circuit

CGP genome

- Internal node genes:
 - Node type: index to lookup table of functions
 - Inputs: index of other nodes
 - Optional: additional parameters
- Output node gene:
 - Internal node index

CGP parameters

- Columns: n_c
- Rows: *n*₁
- Levels-back: /
 - How many of the previous columns a node can connect to
- Columns x rows defines the maximum number of nodes in the graph

UiO Department of Informatics University of Oslo

General structure

Advantages of CGP

- Easy implementation
 - Fixed genome size and simple representation
 - Simple mutation and crossover
- Bloat is restricted
 - The number of nodes is restricted
- Regular structure suitable for e.g. hardware implementation
 - A grid structure with limited connectivity ideal for HW routing

Other features of CGP

- Reuse of parts of the tree is possible
- Allows multiple outputs
- Parts of the genome may be non-coding
 - This has an analogy in biology, where only a fraction of the DNA is composed of exons ("coding" genes).
 - The other part is called introns (non-coding genes, sometimes called "junk" DNA). It is however believed that these are useful for something.
 - Likewise, the genetic redundancy (neutrality) in CGP is thought to be positive for the evolutionary search.

Genetic operations in CGP

- Mutation
 - Select randomly a number of genes to mutate
 - Change to new (valid) random values
- Crossover
 - One-point crossover or other variants directly on the genome
- Usually only mutations are used
 - Many applications find crossover to have a destructive effect - it disrupts the tree structure too much

Evolution in CGP

- The most popular is a variant of ES called (1+4) ES
- Choose children which have >= fitness than parent

CGP can code:

- Circuits
- Mathematical functions / equations
- Neural networks
- Programs
- Machine learning structures
- ...

UiO Department of Informatics University of Oslo

Example: Art

- Inputs: image pixel position x,y
- Outputs: r,g,b intensities per pixel
 - Or single monochrome intensity

$$r = f1(x,y)$$

$$g = f2(x,y)$$

$$b = f3(x,y)$$

Function gene	Function definition
0	X
1	у
2	$\sqrt{x+y}$
3	$\sqrt{ x-y }$
4	$255(\sin(\frac{2\pi}{255}x) + \cos(\frac{2\pi}{255}y))/2$
5	$255(\cos(\frac{2\pi}{255}x) + \sin(\frac{2\pi}{255}y))/2$
6	$255(\cos(\frac{3\pi}{255}x) + \sin(\frac{2\pi}{255}y))/2$
7	$\exp(x + y) \pmod{256}$
8	$ \sinh(x+y) \pmod{256}$

Example: Evolvable Hardware 1

- Evolution of combinational circuit, e.g. multiplier
- 2-bit multiplier:2x2=4 inputs4 outputs
- Fitness:

correct output combinations (of 16)

Example: Evolvable Hardware 2

- Evolution of digital image filters
- Input: distorted image
- Output: filtered image
- Fitness: distance between filtered and original image

Number	Function	Description
0	$x \vee y$	binary or
1	$x \wedge y$	binary and
2	$x \oplus y$	binary xor
3	x + y	addition
4	$x + y^s$	addition with saturation
5	(x+y) >> 1	average
6	Max(x,y)	maximum
7	Min(x, y)	minimum

UiO • Department of Informatics University of Oslo

Example result (Slide from Sekanina)

a) Image corrupted by 5% salt-and-pepper noise PSNR: 18.43 dB (peak signal to noise ratio)

b) Original image

c) Median filter (kernel 3x3)

PSNR: 27.92 dB

268 FPGA slices; 305 MHz

d) Evolved filter (kernel 3x3)

PSNR: 37.50 dB

200 FPGA slices; 308 MHz

Challenges of EHW

- Scalability It's hard to evolve large systems!
 - General challenge in EC
 - Evolution of larger combinational circuits is difficult
 - Large and difficult search space
 - Time-consuming fitness function
 - 4x4 multiplier is hard
- On-chip evolution
 - Less flexibility offered by HW
 - Reconfiguration can be challenging