i G\ , |
UiO ¢ Department of Informatics
University of Oslo

Kyrre Glette — kyrrehg @ifi
INF3490 — Swarm Intelligence
Particle Swarm Optimization

1°
|

————
0 B
Ll @

UiO ¢ Department of Informatics
University of Oslo

Overview

 Introduction to swarm intelligence principles
« Particle Swarm Optimization (PSO)

UiO ¢ Department of Informatics
University of Oslo

Swarms In nature

http://youtu.be/KAdECYXdW9Tc

UiO ¢ Department of Informatics
University of Oslo

Fish, birds, ants, termites, ...

P *- * sa3
= o

ST sady

o - wanll
R =

-
i |

- 5 e
S aves . T PONERE SR e
ﬁ.}‘.‘{mf:'-‘-,-,.._._,._.“__-\ ~ K ﬁ
Fov - §
i e

UiO ¢ Department of Informatics
University of Oslo

Key features

Simple local rules
Local interaction
Decentralized control

Complex global behavior
— Difficult to predict from observing the local rules
— Emergent behavior

UiO ¢ Department of Informatics
University of Oslo

Flocking model — “boids”

S 4 a

Separation — avoid Alignment — steer Cohesion — steer
crowding towards average towards average
heading position

Only considering the boid’s neighborhood

UiO ¢ Department of Informatics
University of Oslo

Result - boids

Original: http://youtu.be/86i1QiIV3-3IA
Netlogo: “Flocking 3D Alternate” model

UiO ¢ Department of Informatics
University of Oslo

Application: Computer graphics

http.//youtu.be/-|F5sAqBp4w

UiO ¢ Department of Informatics
University of Oslo

Applications in bio-inspired

computing

« Particle swarm optimization
— Parameter optimization

* Ant colony optimization

— Find shortest paths through graph by using
artificial pheromones

* Artificial immune systems
— Classification, anomaly detection

« Swarm robotics

— Achieve complex behavior in robotic swarms
through simple local rules

10

UiO ¢ Department of Informatics
University of Oslo

Particle Swarm Optimization (PSO)

« Optimizes a population of solutions
— A swarm of particles

11

UiO ¢ Department of Informatics
University of Oslo

Principle

» Evaluate your present position

« Compare it to your previous best and
neighborhood best

* Imitate self and others

12

UiO ¢ Department of Informatics
University of Oslo

Simplified PSO algorithm

* For each particle I in the swarm
— Calculate fitness
— Update local best
— Find neighborhood best
— Update velocity
— Update position

13

UiO ¢ Department of Informatics
University of Oslo

PSO update formulas

For each dimension d in particle I:
1. Velocity update

(t+1) (t) random (t) random (t)
inertia direction direction
personal best neighborhood
best

2. Position update

(t+1) (1) (t+1)
Xig = Xig TUy

14

UiO ¢ Department of Informatics
University of Oslo

What happens?

* A particle circles around in a region centered
between the bests of itself and its neighbors

* The bests are updated and the particles
cluster around better regions in the search
space

* The way good solutions are propagated
depends on how we define the neighborhood

15

UiO ¢ Department of Informatics
University of Oslo

Neighborhood topologies

» gbest: all particles are connected

— Every particle gets information about the global
best value

— Can converge (too) fast

 |best: connected to K nearest neighbors in a
wrapped population array
— Slower convergence, depending on K
— More areas are searched in parallel

« Several other topologies exist

16

UiO ¢ Department of Informatics
University of Oslo

PSO parameters

Particle:
— Usually a D-dimensional vector of real values

— Binary variant exists

Swarm size: usually 10 < N <100
Recommended a = 0.7298
Recommended 3 = 1.4961

17

UiO ¢ Department of Informatics
University of Oslo

Parameter experimentation

* NetLogo

— Particle Swarm
Optimization model

* Model uses gbest
neighborhood

 Download and try

— Or with java in the
browser

18

UiO ¢ Department of Informatics
University of Oslo

Advantages of PSO

Few parameters

Gradient free

Decentralized control (depends on variant.)
Simple to understand basic principle
Simple to implement

19

UiO ¢ Department of Informatics
University of Oslo

PSO vs. Evolutionary Algorithms

* Both are population based
 PSO: No selection — all particles survive

 |Information exchange between solutions:

— PSO: neighborhood best
— GA: crossover (and selection)

20

UiO ¢ Department of Informatics
University of Oslo

PSO applications

« Similar application areas as EAs
— Most optimization problems

Image and video analysis
Electricity network optimization
Neural networks

21

UiO ¢ Department of Informatics
University of Oslo

Swarm robotics

« Swarmbot project
— http://youtu.be/h-2D-zIU-DQ

* Kilobot project
— http://youtu.be/GnyDAugorGo

« TERMES project

— Termite-inspired swarm
assembly robots
— http://youtu.be/tCIJMGQJnodc

i G\ , |
UiO ¢ Department of Informatics
University of Oslo

Kyrre Glette — kyrrehg @ifi
INF3490 — Evolvable Hardware
Cartesian Genetic Programming

1°
|

————
0 B
Ll @

UiO ¢ Department of Informatics
University of Oslo

Overview

 |Introduction to Evolvable Hardware (EHW)
« Cartesian Genetic Programming
* Applications of EHW

UiO ¢ Department of Informatics
University of Oslo

Evolvable Hardware (EHW)

 Hardware systems designed/
modified automatically by EAs

« A string of symbols/bits is evolved
by an EA and translated intoa £

HW system : et
« Offline EHW Iz o __JP

— Solutions are simulated in a PC S l“ . =i
e Online EHW

7 0
— Solutions are tested on target HW @

UiO ¢ Department of Informatics
University of Oslo

EHW

. FPGA

— Reconfigurable hardware
chip
— Useful for online EHW
* On-chip evolution

— EA running on the target
chip, together with
solutions

* Run-time adaptable EHW

— Evolution can modify the
system during operation

UiO ¢ Department of Informatics
University of Oslo

Applications of EHW

e Pattern recognition / classification circuits
 Digital image filters

« Evolution of analog circuits

e Cache mapping functions

* On-the-fly compression for printers

e Spacecraft antenna

UiO ¢ Department of Informatics
University of Oslo

CARTESIAN GENETIC
PROGRAMMING

UiO ¢ Department of Informatics
University of Oslo

Cartesian Genetic Programming (CGP)

* A type of Genetic Programming

« Allows restrictions compared to general GP:
— Integer genome
— Tree nodes are mapped to a grid
— Connectivity can be restricted

« Popular in Evolvable Hardware applications
— But can be used for many other things as well

UiO ¢ Department of Informatics
University of Oslo

Example structure: Digital circuit

(002]003]345(012]013]257]269
i 5 6 7 8 9 10
[95712118191181 4 1 9 112[13]
11 12 13 0, ©0g Og Op
Input A T Ao Output A
0
Input B Output B
1
Input C —T AND 9 11 _| Output C
2 7 'b T_$
Input D —T__ AND T _J13 Output D
3

UiO ¢ Department of Informatics
University of Oslo

CGP genome

* Internal node genes:
— Node type: index to lookup table of functions
— Inputs: index of other nodes
— Optional: additional parameters
e Output node gene:
— Internal node index

10

UiO ¢ Department of Informatics
University of Oslo

CGP parameters

e Columns: n_
 Rows: n,

e Levels-back: |

— How many of the previous columns a node can
connect to

e Columns x rows defines the maximum
number of nodes In the graph

11

UiO ¢ Department of Informatics

University of Oslo

General structure

{}Y \n, m\/ \n+r
C, /\ / C, /\ /
H}Y \ n,+l H] ﬂ\/ \ n+r+1
r+l .
C /\ / C)\ 4

r+l.a

C 2r=1 []\/_\\

_“l‘.r' F \ n+2r—1
u 2r=1 |

auab uonouny

(c+1)r=1,0""""

auab

UOI193UU0I

C cr, —
,(;?/}: x\lj?+cr
C, i r_/

Crr+10
\// \ n+cr+1

rr+l ,I_

=)'__/

er+l a

(c+l }r—];_

c

(e+1)r=1a —

0,.0.....0,,

(c+l)yr=lg —0 1

outputs

L

Ry

1

12

C . :
{c+]1)r=1,00 —
:\-?//’F \'I n (C I 1)1 l H ../'_'\"

_/

UiO ¢ Department of Informatics
University of Oslo

Advantages of CGP

e Easy implementation
— Fixed genome size and simple representation
— Simple mutation and crossover
« Bloat is restricted
— The number of nodes is restricted
e Regular structure suitable for e.g. hardware
Implementation

— A grid structure with limited connectivity ideal for
HW routing

13

UiO ¢ Department of Informatics
University of Oslo

Other features of CGP

* Reuse of parts of the tree is possible
» Allows multiple outputs
« Parts of the genome may be non-coding

This has an analogy in biology, where only a fraction of the
DNA is composed of exons (“coding” genes).

The other part is called introns (non-coding genes,
sometimes called “junk” DNA). It is however believed that
these are useful for something.

Likewise, the genetic redundancy (neutrality) in CGP is
thought to be positive for the evolutionary search.

14

UiO ¢ Department of Informatics
University of Oslo

Genetic operations in CGP

e Mutation
— Select randomly a number of genes to mutate
— Change to new (valid) random values

e Crossover

— One-point crossover or other variants directly on
the genome

e Usually only mutations are used

— Many applications find crossover to have a
destructive effect - it disrupts the tree structure
too much

15

UiO ¢ Department of Informatics
University of Oslo

Evolution in CGP

 The most popular is a variant of ES called

promote

__’.- L

(1+4) ES

Choose children which have >= fithess than

parent

Fitness 10 |

Fithess 6

L
b

Fitness 9

&
<

Fithess 7

-
%

Fithess 9

promote

A"d

Fithess 10

-

Z
<

Fitness 9

Fitness 6

r
<

Fithness 10 |

/

Fitness 8

promote

[Fitness 10 |

T

' 4

Fitness 7

-
<,

_<
Fitness 12
{ promote

Fitness 6

T

“,

Fithess 9

o
ot

o

-

16

UiO ¢ Department of Informatics
University of Oslo

CGP can code:

Circults

Mathematical functions / equations
Neural networks

Programs

Machine learning structures

17

UiO ¢ Department of Informatics
University of Oslo

Example: Art

e |nputs: image pixel
position X,y
e Outputs: r,g,b
Intensities per pixel
— Or single monochrome
Intensity

r = f1(X,Yy)
f2(X,y)
3(X,y)

o Q
I 1l

Function gene

Function definition

0

1

2

X

-\‘

X+

255(| sin(£Ex) + cos(£Zy) |)/2
255(| cos(Z&x) + sin(Zy) |)/2
255(] cos(%,\‘) + Sin(%—%_\‘))/2
exp(x + y) (mod 256)

sinh(x + y) | (mod 256)

18

UiO ¢ Department of Informatics
University of Oslo

Example: Evolvable Hardware 1

 Evolution of (202Ja0e]s4e [ar2fate]zsr]zss]
combinational circuit, EREDHDEN N
e.g. multiplier - T

 2-bit multiplier: :) __
2X2=4 inputs -
4 outputs i

« Fitness: S

correct output
combinations (of 16)

19

UiO ¢ Department of Informatics
University of Oslo

Example: Evolvable Hardware 2

« Evolution of digital image filters

 |nput: distorted image

e Output: filtered image

* Fitness: distance between filtered and original

Number| Function Description
0 xVy binary or
1 r Ay binary and
2 TPy binary xor
3 r+y addition
4 x+y° addition with saturation
5 (z+y)>>1 average
image 6 Max(x,y) maximum
7 Min(x,y) minimum

UiO ¢ Department of Informatics =X @M P le result (Slide from Sekanina)

University of Oslo

a) Image corrupted by 5% salt-and-pepper noise
PSNR: 18.43 dB (peak signal to noise ratio)

b) Original image

c) Median filter (kernel 3x3)
PSNR: 27.92 dB
268 FPGA slices; 305 MHz

d) Evolved filter (kernel 3x3)
PSNR: 37.50 dB
200 FPGA slices; 308 MHz

UiO ¢ Department of Informatics
University of Oslo

Challenges of EHW

e Scalablility — It’s hard to evolve large systems!
— General challenge in EC

— Evolution of larger combinational circuits is difficult
« Large and difficult search space
« Time-consuming fitness function
* 4x4 multiplier is hard

e On-chip evolution
— Less flexibility offered by HW
— Reconfiguration can be challenging

22

