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Overview

* Introduction to swarm intelligence principles
 Particle Swarm Optimization (PSO)
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Swarms in nature

http://youtu.be/kdECYXdW9Tc
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Fish, birds, ants, termites, ...
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Key features

+ Simple local rules
* Local interaction
» Decentralized control

» Complex global behavior
— Difficult to predict from observing the local rules
— Emergent behavior
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Flocking model —“boids”
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Separation — avoid Alignment — steer Cohesion — steer
crowding towards average towards average
heading position

Only considering the boid’s neighborhood
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Result - boids

Original: http://youtu.be/86iQiV3-3IA
Netlogo: “Flocking 3D Alternate” model
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Application: Computer graphics
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http://youtu.be/-jF5sAgBp4w
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Applications in bio-inspired

computing

+ Particle swarm optimization
— Parameter optimization

» Ant colony optimization

— Find shortest paths through graph by using
artificial pheromones

+ Artificial immune systems
— Classification, anomaly detection
« Swarm robotics

— Achieve complex behavior in robotic swarms
through simple local rules 1o
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Particle Swarm Optimization (PSO)

» Optimizes a population of solutions
— A swarm of particles
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Principle

+ Evaluate your present position

» Compare it to your previous best and
neighborhood best

+ Imitate self and others
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Simplified PSO algorithm

* For each particle i in the swarm
— Calculate fitness
— Update local best
— Find neighborhood best
— Update velocity
— Update position
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PSO update formulas

For each dimension d in particle i:
1. Velocity update

random random

(t+1) (1) (1) (0
vy < avy +U(0,B) (PM = Xiq ) +U(0,8) (Pga ~ Xid )
inertia direction direction
personal best neighborhood

best
2. Position update
(D (0 ()

Xid id TV
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What happens?

» A particle circles around in a region centered
between the bests of itself and its neighbors

* The bests are updated and the particles
cluster around better regions in the search
space

» The way good solutions are propagated
depends on how we define the neighborhood
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Neighborhood topologies

+ gbest: all particles are connected

— Every particle gets information about the global
best value

— Can converge (too) fast
+ Ibest: connected to K nearest neighbors in a
wrapped population array
— Slower convergence, depending on K
— More areas are searched in parallel

» Several other topologies exist
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PSO parameters

+ Particle:
— Usually a D-dimensional vector of real values
— Binary variant exists

» Swarm size: usually 10 <N <100
*+ Recommended a = 0.7298
+ Recommended 3 = 1.4961
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Parameter experimentation

* NetLogo

— Particle Swarm
Optimization model

* Model uses gbest
neighborhood
* Download and try

— Or with java in the
browser _
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Advantages of PSO

Few parameters

Gradient free

Decentralized control (depends on variant.)
Simple to understand basic principle
Simple to implement
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PSO vs. Evolutionary Algorithms

» Both are population based
* PSO: No selection — all particles survive

+ Information exchange between solutions:
— PSO: neighborhood best
— GA: crossover (and selection)
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PSO applications

Similar application areas as EAs
— Most optimization problems

Image and video analysis
Electricity network optimization
Neural networks
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Swarm robotics

+ Swarmbot project

— http://youtu.be/h-2D-zIU-DQ

+ Kilobot project

— http://youtu.be/GnyDAuqorGo

+ TERMES project

— Termite-inspired swarm

assembly robots

— http://youtu.be/tCIMGQJnodc gy

S
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Overview

« Introduction to Evolvable Hardware (EHW)
 Cartesian Genetic Programming
e Applications of EHW
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Evolvable Hardware (EHW)

« Hardware systems designed/
modified automatically by EAs _

* A string of symbols/bits is evolved 25
by an EA and translated intoa ==
HW system

» Offline EHW
— Solutions are simulated in a PC

¢ Online EHW _
— Solutions are tested on target HW @
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EHW

* FPGA
— Reconfigurable hardware
chip
— Useful for online EHW
* On-chip evolution

— EA running on the target
chip, together with
solutions

* Run-time adaptable EHW

— Evolution can modify the
system during operation
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Applications of EHW

 Pattern recognition / classification circuits
« Digital image filters

< Evolution of analog circuits

« Cache mapping functions

« On-the-fly compression for printers

» Spacecraft antenna
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CARTESIAN GENETIC
PROGRAMMING
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Cartesian Genetic Programming (CGP)

« A type of Genetic Programming

 Allows restrictions compared to general GP:
— Integer genome
— Tree nodes are mapped to a grid
— Connectivity can be restricted

» Popular in Evolvable Hardware applications
— But can be used for many other things as well
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Example structure: Digital circuit
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CGP genome

« Internal node genes:
— Node type: index to lookup table of functions
— Inputs: index of other nodes
— Optional: additional parameters
e Output node gene:
— Internal node index
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CGP parameters

» Columns: n,
* Rows: n,
Levels-back: |

— How many of the previous columns a node can
connect to

¢ Columns x rows defines the maximum
number of nodes in the graph
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General structure
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Advantages of CGP

e Easy implementation
— Fixed genome size and simple representation
— Simple mutation and crossover
* Bloat is restricted
— The number of nodes is restricted
* Regular structure suitable for e.g. hardware
implementation

— A grid structure with limited connectivity ideal for
HW routing
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Other features of CGP

» Reuse of parts of the tree is possible
« Allows multiple outputs

 Parts of the genome may be non-coding

» This has an analogy in biology, where only a fraction of the
DNA is composed of exons (“coding” genes).

* The other part is called introns (non-coding genes,
sometimes called “junk” DNA). It is however believed that
these are useful for something.

» Likewise, the genetic redundancy (neutrality) in CGP is
thought to be positive for the evolutionary search.
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Genetic operations in CGP

e Mutation
— Select randomly a number of genes to mutate
— Change to new (valid) random values
e Crossover
— One-point crossover or other variants directly on
the genome
 Usually only mutations are used

— Many applications find crossover to have a
destructive effect - it disrupts the tree structure
too much
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Evolution in CGP

e The most popular is a variant of ES called
(1+4) ES

¢ Choose children which have >= fitness than
parent

Fitness10 | promote Fitness 10

Fitness 7
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CGP can code:

* Circuits

« Mathematical functions / equations
Neural networks

* Programs

Machine learning structures
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Example: Art

* Inputs: image pixel
pOSItIOﬂ X,y Function gene  Function definition
 Outputs: r,g,b '

intensities per pixel 7
— Or single monochrome 3 ¥ e
intensity 4 255} sin( 251) + coul 33
r = fl(X ,y) s 255( cos{ 251} + si
g = f2(x,y) ’ 255( et )+ s o) /2
) exply + y) (mod 256)
b = fS(X’y) " sinh(x + v)| (mod 256

18
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Example: Evolvable Hardware 1

* Evolution of (CLE) CIENE R L ) EXTa Ly
combinational circuit, B0 D EEN N

n 2 W o, g o op

e.g. multiplier
o 2-bit multiplier:
2x2=4 inputs
4 outputs
* Fitness:

# correct output
combinations (of 16)
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Example: Evolvable Hardware 2

Evolution of digital image filters

Input: distorted image

Output: filtered image

Fitness: distance between filtered and original
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a) Image corrupted by 5% salt-and-pepper noise
PSNR: 18.43 dB (peak signal to noise ratio)
b) Original image
c) Median filter (kernel 3x3)
PSNR: 27.92 dB
268 FPGA slices; 305 MHz
d) Evolved filter (kernel 3x3)

PSNR: 37.50 dB
200 FPGA slices; 308 MHz




UiO 2 Department of Informatics
University of Oslo

Challenges of EHW

 Scalability — It's hard to evolve large systems!
— General challenge in EC
— Evolution of larger combinational circuits is difficult
« Large and difficult search space
« Time-consuming fitness function
* 4x4 multiplier is hard
* On-chip evolution
— Less flexibility offered by HW
— Reconfiguration can be challenging
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