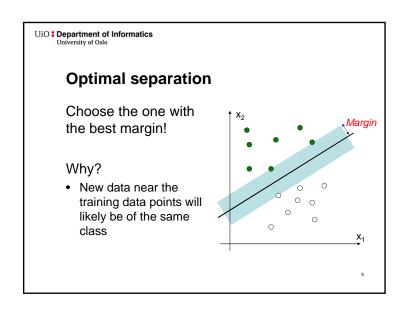


This lecture

Support vector machines
Optimal separation
Kernels

Ensemble learning

Dimensionality reduction
Principal component analysis



Uio: Department of Informatics
University of Oslo

Optimal separation

Support vectors

The training data defining the margin

The rest of the data can be discarded when we are done learning

UiO : Department of Informatics
University of Oslo

Nonlinearity

- How to classify linearly inseparable data?
 - Combine many linear SVMs?
 - Similar to multilayer neural networks
 - But what are the target outputs for the hidden layers?
 - A different idea:
 - · Map inputs into a higher-dimensional space
 - Hope that they are linearly separable there.

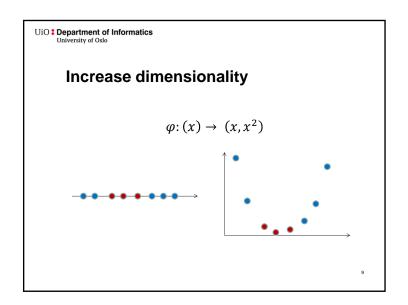
UiO Department of Informatics

Optimal separation

• Distance to hyperplane:

$$\mathbf{w} \cdot \mathbf{x}_i - b = \begin{cases} > 0 & \text{above plane - class A:} \quad \mathbf{y}_i = 1 \\ < 0 & \text{below plane - class B:} \quad \mathbf{y}_i = -1 \end{cases}$$

- If we require that $y_i(\mathbf{w} \cdot \mathbf{x}_i b) \ge 1$ then the margin is $M = 1/(2|\mathbf{w}|)$
 - Maximizing the margin \Leftrightarrow minimizing $\mathbf{w} \cdot \mathbf{w}$
 - Exact solution can be found, along with a list of support vectors, using quadratic programming



High dimensionality

- SVMs typically map to feature spaces of much higher dimension
 - With enough dimensions, it becomes very likely that the data becomes linearly separable

10

UiO Department of Informatics

Overfitting

- Any data set is linearly separable in a feature space of sufficient complexity
- We have to be wary of overfitting: Use cross-validation and early stopping!
 - If there are noisy outliers (esp. mislabeled examples), we need to take stronger measures: soft margin.

2

UiO Department of Informatics

Kernels

- Finding the hyperplane only requires the dot product between vectors, not the actual vectors
 - Calculating $\varphi(x_i) \cdot \varphi(x_i)$ might be much easier than $\varphi(x_i)$!
- $K(x_i, x_i) = \varphi(x_i) \cdot \varphi(x_i)$ is called the *kernel* of φ
 - Common kernels include
 - None: $K(x_i, x_j) = x_i \cdot x_j$
 - Polynomial: $K(x_i, x_i) = (1 + x_i \cdot x_i)^p$
 - Sigmoid: $K(x_i, x_i) = \tanh(\kappa x_i \cdot x_i \delta)$
 - Radial basis function: $K(x_i, x_i) = \exp(-(x_i x_i)^2 / 2\sigma^2)$

11

UiO Department of Informatics
University of Oslo

Soft margins

- Instead of perfectly separating all data, allow some misclassifications
- Introduce slack variables
 - Optimize tradeoff between maximum margin and misclassification penalty
 - Tradeoff is balanced by penalty factor C
- Useful when some error is tolerated, or when there are chances of mislabeled training data

Applications

- Classification
 - Multi-class can be achieved via multiple outputs (1v1 or 1vMany)
- Regression
- · Supervised and unsupervised learning
- · Object detection & recognition
- · Content-based image retrieval
- · Text recognition
- · Speech recognition
- Biometrics
- · Etc.

14

UiO : Department of Informatics

Ensemble learning

- "Decision by committee"
 - Train multiple classifiers to be slightly different
 - · An "ensemble"
 - Make classifications based on the combined results of all of them
- Two common types of training differentiation
 - Boosting: change the importance of data points
 - Bagging: change the data sample

6

UiO Department of Informatics

Considerations

- · Quite powerful
 - Must beware of overfitting
- Robust to some noise, if margin is managed properly
- Fast to apply
- Difficult to interpret
- How to pick kernel?
 - Start with Gaussian RBF or polynomial
 - May require domain-specific knowledge
 - Can combine kernels for heterogeneous data
 - Consult experts

15

UiO Department of Informatics

Boosting - AdaBoost

- · Iteratively trains classifiers
- Each data point is assigned a weight
 - For the first classifier all the weights are equal
 - For the next classifier the weights of the data points that were misclassified previously is raised
 - This is continued until the combined error of the classifiers trained so far is sufficiently low
- Dependent on the classifier's ability to consider the weights in their training

′

Bagging

- Makes a random sample of the training data for each classifier – bootstrap samples
 - Same size as the training data
 - With replacement
 - Some data points will occur at least twice!
 - Variance will be reduced
 - Each classifier will have different views of the training data

18

UiO Department of Informatics

Majority voting

What to do when there is disagreement

- Refuse to classify?
- Classify only if more than half agree?
- Return the most common vote?

20

UiO Department of Informatics

Combining the classifiers

- Which classifiers do we listen to when the ensemble is in disagreement?
 - Majority voting
 - The most "popular" class is chosen
 - Weighted voting
 - · Some classifiers have greater influence than others
 - Mixture of experts
 - A meta-machine learning algorithm decides which classifiers are most likely to be correct

19

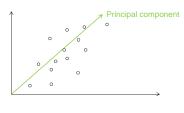
UiO Department of Informatics
University of Oslo

Dimensionality reduction – Why reduce dimensionality?

- Reduces time complexity: Less computation
- Reduces space complexity: Less parameters
- · Saves the cost of acquiring irrelevant features
- · Simpler models are more robust
- Easier to interpret; simpler explanation
- Data visualization (structure, groups, outliers, etc.) if plotted in 2 or 3 dimensions

Principal components

- The directions along with the most variation
 - Don't have to correspond to the coordinate axes



22

UiO Department of Informatics
University of Oslo

Calculating the principal components

- Calculate the covariance matrix of the data
- Calculate the eigenvalues and eigenvectors of the covariance matrix
- Transform the data with the eigenvectors for the largest eigenvalues as the new basis

24

UiO Department of Informatics

Principal component analysis

- Rotate the axes to lie along the principal components
- Remove the axes with the least variation
 - Keep a certain number of dimensions
 - Or: keep a certain percentage of the variation

23

UiO Department of Informatics
University of Oslo

Calculating the covariance matrix

The variance of feature *i*:

$$\sigma_i^2 = \sigma_{ii} = \frac{1}{N} \sum_{k=1}^{N} (x_{ki} - \mu_i)^2$$

The covariance between feature i and j:

$$\sigma_{ij} = \frac{1}{N} \sum_{k=1}^{N} (x_{ki} - \mu_i) (x_{kj} - \mu_j)$$

UiO Department of Informatics
University of Oslo

Calculating the covariance matrix

The covariance matrix is composed of the variances and covariances of every combination of feature:

$$\begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \end{bmatrix}$$

26

UiO Department of Informatics
University of Oslo

Notes on PCA

- PCA is a linear transformation
 - Does not directly help with data that is not linearly separable
 - However, may make learning easier because of reduced complexity
- PCA removes some information from the data
 - Might just be noise
 - Might provide helpful nuances that may be of help to some classifiers

28

UiO Department of Informatics
University of Oslo

The covariance eigenvectors

The eigenvectors v_i and eigenvalues λ_i are the n unique values of matrix C such that

$$\lambda_i \boldsymbol{v}_i = C \boldsymbol{v}_i$$

- The eigenvectors of the covariance matrix describe the directions of the principal components
- The eigenvalues tell us how large part of the total variation in the data that is accounted for by that principal component