
unsupervised	
  learning
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supervised	
  learning?

• training	
  data	
  is	
  labelled	
  (targets	
  provided)	
  

• targets	
  used	
  as	
  feedback	
  by	
  the	
  algorithm	
  
to	
  guide	
  learning
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what	
  if	
  there	
  is	
  data	
  but	
  	
  
no	
  targets?
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unknown	
  targets

• targets	
  may	
  be	
  hard	
  
to	
  obtain	
  /	
  boring	
  
to	
  generate	
  

!

!

• targets	
  may	
  just	
  not	
  
be	
  known	
  

https://ai.jpl.nasa.gov/public/papers/hayden_isairas2010_onboard.pdf

Saturn’s moon, Titan
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unsupervised	
  learning
• unlabeled	
  data	
  

• learning	
  without	
  targets	
  

• data	
  itself	
  is	
  used	
  by	
  the	
  algorithm	
  to	
  guide	
  
learning

• spo<ng	
  similarity	
  between	
  various	
  data	
  
points	
  
• exploit	
  similarity	
  to	
  cluster	
  similar	
  data	
  

points	
  together	
  
• automa9c	
  classifica9on!
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external	
  error	
  func9on?

since	
  there	
  is	
  no	
  target,	
  there	
  is	
  
no	
  task	
  specific	
  error	
  

func@on
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compe99ve	
  learning

e.g.

usual	
  prac9ce	
  is	
  to	
  cluster	
  data	
  
together	
  via	
  “compe@@ve	
  learning”

set	
  of	
  neurons

fire	
  the	
  neuron	
  that	
  best	
  
matches	
  (has	
  highest	
  
ac@va@on	
  w.r.t.)	
  the	
  	
  

data	
  point/input	
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let	
  us	
  look	
  at	
  two	
  
unsupervised	
  learning	
  

algorithms
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k-­‐means	
  clustering?

self	
  orga
nising	
  m

aps?
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k-­‐means	
  clustering
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k-­‐means	
  clustering

• say	
  you	
  know	
  the	
  number	
  of	
  clusters	
  in	
  a	
  
data	
  set,	
  but	
  do	
  not	
  know	
  which	
  data	
  
point	
  belongs	
  to	
  which	
  cluster	
  

• how	
  would	
  you	
  assign	
  a	
  data	
  point	
  to	
  one	
  
of	
  the	
  clusters?
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flow	
  of	
  k-­‐means

• posi9on	
  k	
  centers	
  (or	
  centroids)	
  at	
  random	
  
in	
  the	
  data	
  space	
  

• assign	
  each	
  data	
  point	
  to	
  the	
  nearest	
  
center	
  according	
  to	
  a	
  chosen	
  distance	
  
measure	
  

•move	
  the	
  centers	
  to	
  the	
  means	
  of	
  the	
  
points	
  they	
  represent	
  

• iterate
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chosen	
  distance	
  
measure?

typically	
  euclidean	
  distance

x1

x2

(x12, x22)

(x11, x21)
x22 - x21

x12 - x11

√(x12 - x11)2 + (x22 - x21)2
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k?

• k	
  points	
  are	
  used	
  to	
  represent	
  the	
  
clustering	
  result,	
  each	
  such	
  point	
  being	
  the	
  
mean	
  of	
  a	
  cluster	
  

• k	
  must	
  be	
  specified
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the	
  algorithm
(1)	
  pick	
  a	
  number,	
  k,	
  of	
  cluster	
  centers	
  (at	
  random,	
  

do	
  not	
  have	
  to	
  be	
  data	
  points)	
  

(2)	
  assign	
  every	
  data	
  point	
  to	
  its	
  nearest	
  cluster	
  
center	
  (e.g.	
  using	
  euclidean	
  distance)	
  

(3)	
  move	
  each	
  cluster	
  center	
  to	
  the	
  mean	
  of	
  data	
  
points	
  assigned	
  to	
  it	
  

(4)	
  repeat	
  steps	
  (2)	
  and	
  (3)	
  un9l	
  convergence	
  (e.g.	
  
change	
  in	
  cluster	
  assignments	
  less	
  than	
  a	
  
threshold)
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x1

x2

k1

k2

k3
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x1

x2

k1

k2

k3

17



x1

x2

k1

k2

k3
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x1

x2

k1

k2

k3
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x1

x2

k1

k2

k3
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x1

x2

k1

k2

k3
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x1

x2

k1

k2

k3
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some	
  thoughts...

• results	
  vary	
  depending	
  on	
  ini@al	
  choice	
  of	
  
cluster	
  centers	
  

• can	
  be	
  trapped	
  in	
  local	
  minima	
  

• restart	
  with	
  different	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
random	
  centers	
  

!

• does	
  not	
  handle	
  outliers	
  well

k1

k2
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some	
  thoughts...

• results	
  vary	
  depending	
  on	
  ini@al	
  choice	
  of	
  
cluster	
  centers	
  

• can	
  be	
  trapped	
  in	
  local	
  minima	
  

• restart	
  with	
  different	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
random	
  centers	
  

!

• does	
  not	
  handle	
  outliers	
  well

k1 k2
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x1

x2

let’s	
  look	
  at	
  the	
  dependence	
  on	
  
ini9al	
  choice...
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a	
  solu9on...

x1

x2
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another	
  solu9on...

x1

x2
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yet	
  another	
  solu9on...

x1

x2
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all	
  these	
  solu9ons	
  are	
  	
  
local	
  minima!
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choice	
  of	
  k
not	
  knowing	
  k	
  leads	
  to	
  further	
  problems!

x1

x2

ov
erfi
<
ng
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choice	
  of	
  k
not	
  knowing	
  k	
  leads	
  to	
  further	
  problems!

x1

x2

un
de
rfi
<
ng
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what	
  are	
  we	
  
minimising?

• there	
  is	
  no	
  externally	
  given	
  error	
  func9on	
  

• the	
  within	
  cluster	
  sum	
  of	
  squared	
  error	
  is	
  
what	
  k-­‐means	
  tries	
  to	
  minimise	
  

• so,	
  with	
  k	
  clusters	
  K1, K2, ..., Kk,	
  
centers	
  k1, k2, ..., kk,	
  and	
  data	
  
points	
  xjs,	
  we	
  effec9vely	
  minimise:

2
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possible	
  remedies...

• run	
  algorithm	
  many	
  9mes	
  with	
  different	
  
values	
  of	
  k	
  

• pick	
  k	
  that	
  leads	
  to	
  lowest	
  error	
  without	
  
overfiLng	
  

• run	
  algorithm	
  from	
  many	
  star@ng	
  points	
  

• to	
  avoid	
  local	
  minima
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noise?
•mean	
  suscep9ble	
  to	
  outliers	
  (very	
  noisy	
  data)	
  

• one	
  idea	
  is	
  to	
  replace	
  mean	
  by	
  median	
  

• 1,2,1,2,100?	
  	
  

• mean:	
  21.2	
  (affected)	
  

• median:	
  2	
  (not	
  affected)

undesirable desirable
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strengths	
  of	
  k-­‐means?

• simple:	
  easy	
  to	
  understand	
  and	
  implement	
  

• efficient	
  with	
  9me	
  complexity	
  O(tkn)	
  

• n	
  =	
  #data	
  points,	
  k	
  =	
  #clusters,	
  t	
  =	
  #itera9ons	
  

• typically,	
  k	
  and	
  t	
  are	
  small,	
  so	
  considered	
  a	
  
linear	
  algorithm
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weaknesses?
• unable	
  to	
  handle	
  noisy	
  data/

outliers	
  

!

• unsuitable	
  for	
  discovering	
  
clusters	
  with	
  non-­‐convex	
  shapes	
  	
  

!

• k	
  has	
  to	
  be	
  specified	
  in	
  advance
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self-­‐organising	
  maps
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self-­‐organising	
  maps

• high	
  dimensional	
  data	
  hard	
  to	
  understand	
  
as	
  is	
  

• data	
  visualisa@on	
  and	
  clustering	
  technique	
  
that	
  reduces	
  dimensions	
  of	
  data	
  	
  

• reduce	
  dimensions	
  by	
  projec@ng	
  and	
  
displaying	
  the	
  similari@es	
  between	
  data	
  
points	
  on	
  a	
  1	
  or	
  2	
  dimensional	
  map
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a	
  neural	
  network	
  with	
  
topological	
  meaning

• a	
  SOM	
  is	
  an	
  ar9ficial	
  neural	
  network	
  
trained	
  in	
  an	
  unsupervised	
  manner	
  

• the	
  network	
  is	
  able	
  to	
  cluster	
  data	
  in	
  a	
  way	
  
that	
  topological	
  rela@onships	
  between	
  
data	
  points	
  are	
  preserved	
  

• i.e.	
  neurons	
  close	
  together	
  represent	
  
data	
  points	
  that	
  are	
  close	
  together
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e.g.

1-­‐D	
  SOM	
  clustering	
  3-­‐D	
  RGB	
  data

2-­‐D	
  SOM	
  clustering	
  3-­‐D	
  RGB	
  data

#ff0000

#ff1100

#ff1122
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biological	
  mo9va9on...
•mo9vated	
  by	
  how	
  visual,	
  auditory,	
  and	
  

other	
  sensory	
  informa@on	
  is	
  handled	
  in	
  
separate	
  parts	
  of	
  the	
  cerebral	
  cortex	
  in	
  the	
  
human	
  brain	
  

• sounds	
  that	
  are	
  similar	
  excite	
  neurons	
  that	
  
are	
  near	
  to	
  each	
  other	
  

• sounds	
  that	
  are	
  very	
  different	
  excite	
  
neurons	
  that	
  are	
  a	
  long	
  way	
  off	
  

• input	
  feature	
  mapping!
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from	
  mo9va9on	
  to	
  
inspira9on...

• so	
  the	
  idea	
  is	
  that	
  learning	
  should	
  
selec@vely	
  tune	
  neurons	
  close	
  to	
  each	
  
other	
  to	
  respond	
  to/represent	
  a	
  cluster	
  of	
  
data	
  points	
  	
  

• first	
  described	
  as	
  an	
  ANN	
  by	
  Prof.	
  Teuvo	
  
Kohonen
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1,1

2,4

3,3	
  

4,5

each	
  node	
  has	
  a	
  posi9on	
  
associated	
  with	
  it	
  on	
  the	
  map

SOM	
  consists	
  of	
  components	
  
called	
  nodes/neurons

and	
  a	
  weight	
  vector	
  of	
  
dimension	
  given	
  by	
  the	
  data	
  

points	
  (input	
  vectors)
e.g.	
  say,	
  5D	
  input	
  vector
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weighted	
  
connec9ons

feature/output/
map	
  layer

input	
  layer

and	
  so	
  on...	
  	
  
i.e.	
  fully	
  

connected
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neurons	
  are	
  
interconnected	
  
within	
  a	
  defined	
  
neighbourhood	
  
(hexagonal	
  here)	
  
i.e.	
  neighbourhood	
  
rela@on	
  defined	
  on	
  

output	
  layer

45



typically,	
  
rectangular	
  or	
  

hexagonal	
  la<ce	
  
neighbourhood/
topology	
  for	
  2D	
  

SOMs

46



j

x1 x2 x3 x4 xn

.	
  .	
  .

.	
  .	
  .
wj1

wj2
wj3 wj4

wjn

laLce	
  responds	
  
to	
  input

one	
  neuron	
  wins,	
  
i.e.	
  has	
  the	
  highest	
  

response	
  
(known	
  as	
  the	
  best	
  
matching	
  unit)

matchin
g?
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matching?

• input	
  and	
  weight	
  vectors	
  can	
  be	
  matched	
  in	
  
numerous	
  ways	
  

• 	
  typically: euclidean

manhaUan

dot	
  product
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adap@ng	
  weights	
  of	
  
winner	
  (and	
  its	
  

neighbourhood	
  to	
  a	
  
lesser	
  degree)	
  to	
  
closely	
  resemble/
match	
  inputs

j

x1 x2 x3 x4 xn

.	
  .	
  .

.	
  .	
  . ...and	
  so	
  on	
  for	
  all	
  
neighbouring	
  nodes...

learning...
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j

x1 x2 x3 x4 xn

.	
  .	
  .

.	
  .	
  . ...and	
  so	
  on	
  with	
  N(i,j)	
  
deciding	
  how	
  much	
  to	
  
adapt	
  a	
  neighbour’s	
  
weight	
  vector

adap9ng	
  
weights?
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N(i,j)	
  is	
  the	
  
neighbourhood	
  

func9on	
  j

x1 x2 x3 x4 xn

.	
  .	
  .

.	
  .	
  .
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N(i,j)	
  tells	
  how	
  close	
  
a	
  neuron	
  i	
  is	
  from	
  the	
  
winning	
  neuron	
  jj

x1 x2 x3 x4 xn

.	
  .	
  .

.	
  .	
  .
the	
  closer	
  i	
  is	
  from	
  j	
  on	
  
the	
  la<ce,	
  the	
  higher	
  is	
  

N(i,j)
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j

i

x1 x2 x3 x4 xn

.	
  .	
  .

.	
  .	
  .

N(i,j)	
  will	
  be	
  rather	
  high	
  
for	
  this	
  neuron!
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j

i

x1 x2 x3 x4 xn

.	
  .	
  .

.	
  .	
  .

but	
  not	
  as	
  high	
  	
  
for	
  this

so,	
  update	
  of	
  weight	
  
vector	
  of	
  this	
  neuron	
  

will	
  be	
  smaller

in	
  other	
  words,	
  this	
  
neuron	
  will	
  not	
  be	
  
moved	
  as	
  much	
  

towards	
  the	
  input,	
  as	
  
compared	
  to	
  neurons	
  

closer	
  to	
  j
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neurons	
  compe@ng	
  to	
  match	
  data	
  point

summarising	
  
learning...

one	
  winning

adap@ng	
  its	
  weights	
  towards	
  data	
  
point	
  and	
  bringing	
  la<ce	
  

neighbours	
  along
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with	
  such	
  learning...
• we	
  end	
  up	
  finding	
  weight	
  vectors	
  for	
  all	
  

neurons	
  in	
  such	
  a	
  way	
  that	
  adjacent	
  
neurons	
  will	
  have	
  similar	
  weight	
  vectors!	
  

• for	
  any	
  input	
  vector,	
  the	
  output	
  of	
  the	
  
network	
  will	
  be	
  the	
  neuron	
  whose	
  weight	
  
vector	
  best	
  matches	
  the	
  input	
  vector	
  

• so,	
  each	
  (weight	
  vector	
  of	
  a)	
  neuron	
  is	
  the	
  
center	
  of	
  the	
  cluster	
  containing	
  all	
  input	
  
data	
  points	
  mapped	
  to	
  this	
  neuron
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j

i

x1 x2 x3 x4 xn

.	
  .	
  .

.	
  .	
  .

N(i,j)	
  is	
  such	
  that	
  the	
  
neighbourhood	
  of	
  a	
  
winning	
  neuron	
  

reduces	
  with	
  9me	
  as	
  
the	
  learning	
  proceeds

the	
  learning	
  rate	
  
reduces	
  with	
  9me	
  as	
  

well
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j

at	
  the	
  beginning	
  of	
  
learning	
  the	
  en9re	
  
laLce	
  could	
  be	
  the	
  
neighbourhood	
  of	
  

neuron	
  j

weight	
  update	
  for	
  all	
  
neurons	
  will	
  happen	
  in	
  

this	
  situa9on
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j

at	
  some	
  point	
  later,	
  this	
  
could	
  be	
  the	
  

neighbourhood	
  of	
  j

weight	
  update	
  for	
  only	
  
the	
  4	
  neurons	
  and	
  j	
  will	
  

happen
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j

much	
  further	
  on...

weight	
  update	
  for	
  only	
  j	
  
will	
  happen

typically,	
  N(i,j)	
  is	
  a	
  
gaussian	
  func9on	
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three	
  essen9al	
  processes
• compe@@on	
  -­‐	
  finding	
  the	
  best	
  matching	
  

unit/winner,	
  given	
  an	
  input	
  vector	
  

• coopera@on	
  -­‐	
  neurons	
  topologically	
  close	
  
to	
  winner	
  get	
  to	
  be	
  part	
  of	
  the	
  win,	
  so	
  as	
  to	
  
become	
  sensi9ve	
  to	
  inputs	
  similar	
  to	
  this	
  
input	
  vector	
  	
  

•weight	
  adapta@on	
  -­‐	
  is	
  how	
  the	
  winner	
  and	
  
neighbour’s	
  weights	
  move	
  towards	
  and	
  
represent	
  similar	
  input	
  vectors,	
  which	
  are	
  
clustered	
  under	
  them
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size	
  of	
  the	
  network?
•we	
  determine	
  the	
  size	
  
• big	
  network?	
  	
  
• each	
  neuron	
  represents	
  each	
  input	
  

vector!	
  	
  
• not	
  much	
  generalisa9on!	
  
• small	
  network?	
  
• too	
  much	
  generalisa9on!	
  
• no	
  differen9a9on!	
  
• try	
  different	
  sizes	
  and	
  pick	
  the	
  best...

62
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performance	
  
measures?

• quan@za@on	
  error:	
  average	
  
distance	
  between	
  each	
  input	
  
vector	
  and	
  respec9ve	
  winning	
  
neuron	
  

• topographic	
  error:	
  propor9on	
  
of	
  input	
  vectors	
  for	
  which	
  
winning	
  and	
  second	
  place	
  
neuron	
  are	
  not	
  adjacent	
  in	
  
the	
  laLce
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self-­‐organising?

• global	
  ordering	
  from	
  local	
  interac@ons	
  

• each	
  neuron	
  interacts	
  only	
  with	
  its	
  
neighbours	
  via	
  N(i,j)	
  

• but	
  the	
  network	
  ends	
  up	
  clustering	
  and	
  
preserving	
  topological	
  rela9onships	
  in	
  
data
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visualising	
  the	
  resul9ng	
  
SOM?

•once	
  the	
  network	
  organises	
  itself	
  over	
  data,	
  
how	
  do	
  we	
  visualise	
  it?	
  

• neurons	
  have	
  weights	
  of	
  input	
  vector	
  
dimensions!	
  

• how	
  to	
  see	
  the	
  discovered	
  similari9es/
dissimilari9es	
  in	
  data	
  in	
  the	
  map	
  space?	
  

• U-­‐matrix	
  (unified	
  distance	
  matrix)	
  is	
  one	
  
way
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e.g.	
  from	
  SOM	
  toolbox	
  
h^p://www.cis.hut.fi/somtoolbox/

weight	
  distances	
  between	
  the	
  adjacent	
  
neurons	
  are	
  calculated	
  and	
  shown	
  in	
  

respec9ve	
  shades/heatmap neurons	
  with	
  labels
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advantages?

• good	
  for	
  visualisa@on	
  and	
  interpretability	
  

• good	
  for	
  classifica@on	
  problems	
  

• high	
  sensi@vity	
  to	
  frequent/relevant	
  
inputs	
  

• new	
  ways	
  of	
  associa9ng	
  related	
  data
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disadvantages?

• system	
  is	
  a	
  black	
  box	
  

• a	
  large	
  training	
  set	
  may	
  be	
  required	
  

• for	
  large	
  problems,	
  training	
  can	
  be	
  lengthy	
  

• can	
  be	
  difficult	
  to	
  come	
  up	
  with	
  an	
  input	
  
vector

SOM Toolbox with demo code: http://www.cis.hut.fi/somtoolbox/
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recent	
  fun	
  research…
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topic	
  modelling
• finding	
  underlying	
  structure	
  

in	
  a	
  massive	
  document	
  
collec9on	
  (e.g.	
  wikipedia!)	
  

• topic	
  =	
  subset	
  of	
  terms	
  in	
  an	
  
ar9cle	
  

• ar9cles	
  containing	
  term	
  
subsets	
  in	
  similar	
  
propor@ons	
  

!
e.g. automatic document organiser and browser

http://www.princeton.edu/~achaney/tmve/
wiki100k/browse/topic-list.html
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FIGURE 4. The analysis of a document from Science. Doc-
ument similarity was computed using Eq. (4); topic words
were computed using Eq. (3).

the assignment of words to topics in the abstract of the article, and the top
ten most similar articles.

3. POSTERIOR INFERENCE FOR LDA

The central computational problem for topic modeling with LDA is ap-
proximating the posterior in Eq. (2). This distribution is the key to using
LDA for both quantitative tasks, such as prediction and document general-
ization, and the qualitative exploratory tasks that we discuss here. Several
approximation techniques have been developed for LDA, including mean
field variational inference (Blei et al., 2003), collapsed variational infer-
ence (Teh et al., 2006), expectation propagation (Minka and Lafferty, 2002),80  COMMUNICATIONS OF THE ACM   |  APRIL 2012 |  VOL.  55 |  NO.  4
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observed variables. This conditional 
distribution is also called the posterior 
distribution.

LDA falls precisely into this frame-
work. The observed variables are the 
words of the documents; the hidden 
variables are the topic structure; and 
the generative process is as described 
here. The computational problem of 
inferring the hidden topic structure 
from the documents is the problem of 
computing the posterior distribution, 
the conditional distribution of the hid-
den variables given the documents.

We can describe LDA more formally 
with the following notation. The topics 
are b1:K, where each bk is a distribution 
over the vocabulary (the distributions 
over words at left in Figure 1). The topic 
proportions for the dth document are 
qd, where q d,k is the topic proportion 
for topic k in document d (the car-
toon histogram in Figure 1). The topic 
assignments for the dth document are 
zd, where zd,n is the topic assignment 
for the nth word in document d (the 
colored coin in Figure 1). Finally, the 
observed words for document d are wd, 
where wd,n is the nth word in document 
d, which is an element from the fixed 
vocabulary.

With this notation, the generative 
process for LDA corresponds to the fol-
lowing joint distribution of the hidden 
and observed variables,

 (1)

Notice that this distribution specifies a 
number of dependencies. For example, 
the topic assignment zd,n depends on 
the per-document topic proportions 
q d. As another example, the observed 
word wd,n depends on the topic assign-
ment zd,n and all of the topics b1:K. 
(Operationally, that term is defined by 
looking up as to which topic zd,n refers 
to and looking up the probability of the 
word wd,n within that topic.)

These dependencies define LDA. 
They are encoded in the statistical 
assumptions behind the generative 
process, in the particular mathemati-
cal form of the joint distribution, and—
in a third way—in the probabilistic 
graphical model for LDA. Probabilistic 
graphical models provide a graphical 

language for describing families of 
probability distributions.e The graphi-
cal model for LDA is in Figure 4. These 
three representations are equivalent 
ways of describing the probabilistic 
assumptions behind LDA.

In the next section, we describe 
the inference algorithms for LDA. 
However, we first pause to describe the 
short history of these ideas. LDA was 
developed to fix an issue with a previ-
ously developed probabilistic model 
probabilistic latent semantic analysis 
(pLSI).21 That model was itself a prob-
abilistic version of the seminal work 
on latent semantic analysis,14 which 
revealed the utility of the singular value 
decomposition of the document-term 
matrix. From this matrix factorization 
perspective, LDA can also be seen as a 
type of principal component analysis 
for discrete data.11, 12

Posterior computation for LDA. 
We now turn to the computational 

e The field of graphical models is actually more 
than a language for describing families of 
distributions. It is a field that illuminates the 
deep mathematical links between probabi-
listic independence, graph theory, and algo-
rithms for computing with probability distri-
butions.35

Figure 3. A topic model fit to the Yale Law Journal. Here, there are 20 topics (the top eight are plotted). Each topic is illustrated with its top-
most frequent words. Each word’s position along the x-axis denotes its specificity to the documents. For example “estate” in the first topic 
is more specific than “tax.”
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observed variables. This conditional 
distribution is also called the posterior 
distribution.

LDA falls precisely into this frame-
work. The observed variables are the 
words of the documents; the hidden 
variables are the topic structure; and 
the generative process is as described 
here. The computational problem of 
inferring the hidden topic structure 
from the documents is the problem of 
computing the posterior distribution, 
the conditional distribution of the hid-
den variables given the documents.

We can describe LDA more formally 
with the following notation. The topics 
are b1:K, where each bk is a distribution 
over the vocabulary (the distributions 
over words at left in Figure 1). The topic 
proportions for the dth document are 
qd, where q d,k is the topic proportion 
for topic k in document d (the car-
toon histogram in Figure 1). The topic 
assignments for the dth document are 
zd, where zd,n is the topic assignment 
for the nth word in document d (the 
colored coin in Figure 1). Finally, the 
observed words for document d are wd, 
where wd,n is the nth word in document 
d, which is an element from the fixed 
vocabulary.

With this notation, the generative 
process for LDA corresponds to the fol-
lowing joint distribution of the hidden 
and observed variables,

 (1)

Notice that this distribution specifies a 
number of dependencies. For example, 
the topic assignment zd,n depends on 
the per-document topic proportions 
q d. As another example, the observed 
word wd,n depends on the topic assign-
ment zd,n and all of the topics b1:K. 
(Operationally, that term is defined by 
looking up as to which topic zd,n refers 
to and looking up the probability of the 
word wd,n within that topic.)

These dependencies define LDA. 
They are encoded in the statistical 
assumptions behind the generative 
process, in the particular mathemati-
cal form of the joint distribution, and—
in a third way—in the probabilistic 
graphical model for LDA. Probabilistic 
graphical models provide a graphical 

language for describing families of 
probability distributions.e The graphi-
cal model for LDA is in Figure 4. These 
three representations are equivalent 
ways of describing the probabilistic 
assumptions behind LDA.

In the next section, we describe 
the inference algorithms for LDA. 
However, we first pause to describe the 
short history of these ideas. LDA was 
developed to fix an issue with a previ-
ously developed probabilistic model 
probabilistic latent semantic analysis 
(pLSI).21 That model was itself a prob-
abilistic version of the seminal work 
on latent semantic analysis,14 which 
revealed the utility of the singular value 
decomposition of the document-term 
matrix. From this matrix factorization 
perspective, LDA can also be seen as a 
type of principal component analysis 
for discrete data.11, 12

Posterior computation for LDA. 
We now turn to the computational 

e The field of graphical models is actually more 
than a language for describing families of 
distributions. It is a field that illuminates the 
deep mathematical links between probabi-
listic independence, graph theory, and algo-
rithms for computing with probability distri-
butions.35

Figure 3. A topic model fit to the Yale Law Journal. Here, there are 20 topics (the top eight are plotted). Each topic is illustrated with its top-
most frequent words. Each word’s position along the x-axis denotes its specificity to the documents. For example “estate” in the first topic 
is more specific than “tax.”
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ument similarity was computed using Eq. (4); topic words
were computed using Eq. (3).

the assignment of words to topics in the abstract of the article, and the top
ten most similar articles.

3. POSTERIOR INFERENCE FOR LDA

The central computational problem for topic modeling with LDA is ap-
proximating the posterior in Eq. (2). This distribution is the key to using
LDA for both quantitative tasks, such as prediction and document general-
ization, and the qualitative exploratory tasks that we discuss here. Several
approximation techniques have been developed for LDA, including mean
field variational inference (Blei et al., 2003), collapsed variational infer-
ence (Teh et al., 2006), expectation propagation (Minka and Lafferty, 2002),
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observed variables. This conditional 
distribution is also called the posterior 
distribution.

LDA falls precisely into this frame-
work. The observed variables are the 
words of the documents; the hidden 
variables are the topic structure; and 
the generative process is as described 
here. The computational problem of 
inferring the hidden topic structure 
from the documents is the problem of 
computing the posterior distribution, 
the conditional distribution of the hid-
den variables given the documents.

We can describe LDA more formally 
with the following notation. The topics 
are b1:K, where each bk is a distribution 
over the vocabulary (the distributions 
over words at left in Figure 1). The topic 
proportions for the dth document are 
qd, where q d,k is the topic proportion 
for topic k in document d (the car-
toon histogram in Figure 1). The topic 
assignments for the dth document are 
zd, where zd,n is the topic assignment 
for the nth word in document d (the 
colored coin in Figure 1). Finally, the 
observed words for document d are wd, 
where wd,n is the nth word in document 
d, which is an element from the fixed 
vocabulary.

With this notation, the generative 
process for LDA corresponds to the fol-
lowing joint distribution of the hidden 
and observed variables,

 (1)

Notice that this distribution specifies a 
number of dependencies. For example, 
the topic assignment zd,n depends on 
the per-document topic proportions 
q d. As another example, the observed 
word wd,n depends on the topic assign-
ment zd,n and all of the topics b1:K. 
(Operationally, that term is defined by 
looking up as to which topic zd,n refers 
to and looking up the probability of the 
word wd,n within that topic.)

These dependencies define LDA. 
They are encoded in the statistical 
assumptions behind the generative 
process, in the particular mathemati-
cal form of the joint distribution, and—
in a third way—in the probabilistic 
graphical model for LDA. Probabilistic 
graphical models provide a graphical 

language for describing families of 
probability distributions.e The graphi-
cal model for LDA is in Figure 4. These 
three representations are equivalent 
ways of describing the probabilistic 
assumptions behind LDA.

In the next section, we describe 
the inference algorithms for LDA. 
However, we first pause to describe the 
short history of these ideas. LDA was 
developed to fix an issue with a previ-
ously developed probabilistic model 
probabilistic latent semantic analysis 
(pLSI).21 That model was itself a prob-
abilistic version of the seminal work 
on latent semantic analysis,14 which 
revealed the utility of the singular value 
decomposition of the document-term 
matrix. From this matrix factorization 
perspective, LDA can also be seen as a 
type of principal component analysis 
for discrete data.11, 12

Posterior computation for LDA. 
We now turn to the computational 

e The field of graphical models is actually more 
than a language for describing families of 
distributions. It is a field that illuminates the 
deep mathematical links between probabi-
listic independence, graph theory, and algo-
rithms for computing with probability distri-
butions.35

Figure 3. A topic model fit to the Yale Law Journal. Here, there are 20 topics (the top eight are plotted). Each topic is illustrated with its top-
most frequent words. Each word’s position along the x-axis denotes its specificity to the documents. For example “estate” in the first topic 
is more specific than “tax.”
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observed variables. This conditional 
distribution is also called the posterior 
distribution.

LDA falls precisely into this frame-
work. The observed variables are the 
words of the documents; the hidden 
variables are the topic structure; and 
the generative process is as described 
here. The computational problem of 
inferring the hidden topic structure 
from the documents is the problem of 
computing the posterior distribution, 
the conditional distribution of the hid-
den variables given the documents.

We can describe LDA more formally 
with the following notation. The topics 
are b1:K, where each bk is a distribution 
over the vocabulary (the distributions 
over words at left in Figure 1). The topic 
proportions for the dth document are 
qd, where q d,k is the topic proportion 
for topic k in document d (the car-
toon histogram in Figure 1). The topic 
assignments for the dth document are 
zd, where zd,n is the topic assignment 
for the nth word in document d (the 
colored coin in Figure 1). Finally, the 
observed words for document d are wd, 
where wd,n is the nth word in document 
d, which is an element from the fixed 
vocabulary.

With this notation, the generative 
process for LDA corresponds to the fol-
lowing joint distribution of the hidden 
and observed variables,

 (1)

Notice that this distribution specifies a 
number of dependencies. For example, 
the topic assignment zd,n depends on 
the per-document topic proportions 
q d. As another example, the observed 
word wd,n depends on the topic assign-
ment zd,n and all of the topics b1:K. 
(Operationally, that term is defined by 
looking up as to which topic zd,n refers 
to and looking up the probability of the 
word wd,n within that topic.)

These dependencies define LDA. 
They are encoded in the statistical 
assumptions behind the generative 
process, in the particular mathemati-
cal form of the joint distribution, and—
in a third way—in the probabilistic 
graphical model for LDA. Probabilistic 
graphical models provide a graphical 

language for describing families of 
probability distributions.e The graphi-
cal model for LDA is in Figure 4. These 
three representations are equivalent 
ways of describing the probabilistic 
assumptions behind LDA.

In the next section, we describe 
the inference algorithms for LDA. 
However, we first pause to describe the 
short history of these ideas. LDA was 
developed to fix an issue with a previ-
ously developed probabilistic model 
probabilistic latent semantic analysis 
(pLSI).21 That model was itself a prob-
abilistic version of the seminal work 
on latent semantic analysis,14 which 
revealed the utility of the singular value 
decomposition of the document-term 
matrix. From this matrix factorization 
perspective, LDA can also be seen as a 
type of principal component analysis 
for discrete data.11, 12

Posterior computation for LDA. 
We now turn to the computational 

e The field of graphical models is actually more 
than a language for describing families of 
distributions. It is a field that illuminates the 
deep mathematical links between probabi-
listic independence, graph theory, and algo-
rithms for computing with probability distri-
butions.35

Figure 3. A topic model fit to the Yale Law Journal. Here, there are 20 topics (the top eight are plotted). Each topic is illustrated with its top-
most frequent words. Each word’s position along the x-axis denotes its specificity to the documents. For example “estate” in the first topic 
is more specific than “tax.”
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FIGURE 4. The analysis of a document from Science. Doc-
ument similarity was computed using Eq. (4); topic words
were computed using Eq. (3).

the assignment of words to topics in the abstract of the article, and the top
ten most similar articles.

3. POSTERIOR INFERENCE FOR LDA

The central computational problem for topic modeling with LDA is ap-
proximating the posterior in Eq. (2). This distribution is the key to using
LDA for both quantitative tasks, such as prediction and document general-
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Inventors webpage with code to play with:

http://www.cs.princeton.edu/~blei/topicmodeling.html
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