
unsupervised	  learning
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supervised	  learning?

• training	  data	  is	  labelled	  (targets	  provided)	  

• targets	  used	  as	  feedback	  by	  the	  algorithm	  
to	  guide	  learning
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what	  if	  there	  is	  data	  but	  	  
no	  targets?
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unknown	  targets

• targets	  may	  be	  hard	  
to	  obtain	  /	  boring	  
to	  generate	  

!

!

• targets	  may	  just	  not	  
be	  known	  

https://ai.jpl.nasa.gov/public/papers/hayden_isairas2010_onboard.pdf

Saturn’s moon, Titan
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unsupervised	  learning
• unlabeled	  data	  

• learning	  without	  targets	  

• data	  itself	  is	  used	  by	  the	  algorithm	  to	  guide	  
learning

• spo<ng	  similarity	  between	  various	  data	  
points	  
• exploit	  similarity	  to	  cluster	  similar	  data	  

points	  together	  
• automa9c	  classifica9on!
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external	  error	  func9on?

since	  there	  is	  no	  target,	  there	  is	  
no	  task	  specific	  error	  

func@on
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compe99ve	  learning

e.g.

usual	  prac9ce	  is	  to	  cluster	  data	  
together	  via	  “compe@@ve	  learning”

set	  of	  neurons

fire	  the	  neuron	  that	  best	  
matches	  (has	  highest	  
ac@va@on	  w.r.t.)	  the	  	  

data	  point/input	  	  	  	  	  	  	  
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let	  us	  look	  at	  two	  
unsupervised	  learning	  

algorithms
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k-‐means	  clustering?

self	  orga
nising	  m

aps?
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k-‐means	  clustering
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k-‐means	  clustering

• say	  you	  know	  the	  number	  of	  clusters	  in	  a	  
data	  set,	  but	  do	  not	  know	  which	  data	  
point	  belongs	  to	  which	  cluster	  

• how	  would	  you	  assign	  a	  data	  point	  to	  one	  
of	  the	  clusters?
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flow	  of	  k-‐means

• posi9on	  k	  centers	  (or	  centroids)	  at	  random	  
in	  the	  data	  space	  

• assign	  each	  data	  point	  to	  the	  nearest	  
center	  according	  to	  a	  chosen	  distance	  
measure	  

•move	  the	  centers	  to	  the	  means	  of	  the	  
points	  they	  represent	  

• iterate
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chosen	  distance	  
measure?

typically	  euclidean	  distance

x1

x2

(x12, x22)

(x11, x21)
x22 - x21

x12 - x11

√(x12 - x11)2 + (x22 - x21)2
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k?

• k	  points	  are	  used	  to	  represent	  the	  
clustering	  result,	  each	  such	  point	  being	  the	  
mean	  of	  a	  cluster	  

• k	  must	  be	  specified
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the	  algorithm
(1)	  pick	  a	  number,	  k,	  of	  cluster	  centers	  (at	  random,	  

do	  not	  have	  to	  be	  data	  points)	  

(2)	  assign	  every	  data	  point	  to	  its	  nearest	  cluster	  
center	  (e.g.	  using	  euclidean	  distance)	  

(3)	  move	  each	  cluster	  center	  to	  the	  mean	  of	  data	  
points	  assigned	  to	  it	  

(4)	  repeat	  steps	  (2)	  and	  (3)	  un9l	  convergence	  (e.g.	  
change	  in	  cluster	  assignments	  less	  than	  a	  
threshold)
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x1

x2

k1

k2

k3
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k1

k2

k3
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x1
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x1

x2

k1

k2

k3
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x1

x2

k1

k2

k3

22

some	  thoughts...

• results	  vary	  depending	  on	  ini@al	  choice	  of	  
cluster	  centers	  

• can	  be	  trapped	  in	  local	  minima	  

• restart	  with	  different	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
random	  centers	  

!

• does	  not	  handle	  outliers	  well

k1

k2
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some	  thoughts...

• results	  vary	  depending	  on	  ini@al	  choice	  of	  
cluster	  centers	  

• can	  be	  trapped	  in	  local	  minima	  

• restart	  with	  different	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
random	  centers	  

!

• does	  not	  handle	  outliers	  well

k1 k2
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x1

x2

let’s	  look	  at	  the	  dependence	  on	  
ini9al	  choice...
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a	  solu9on...

x1

x2
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another	  solu9on...

x1

x2
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yet	  another	  solu9on...

x1

x2
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all	  these	  solu9ons	  are	  	  
local	  minima!
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choice	  of	  k
not	  knowing	  k	  leads	  to	  further	  problems!

x1

x2

ov
erfi
<
ng
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choice	  of	  k
not	  knowing	  k	  leads	  to	  further	  problems!

x1

x2

un
de
rfi
<
ng
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what	  are	  we	  
minimising?

• there	  is	  no	  externally	  given	  error	  func9on	  

• the	  within	  cluster	  sum	  of	  squared	  error	  is	  
what	  k-‐means	  tries	  to	  minimise	  

• so,	  with	  k	  clusters	  K1, K2, ..., Kk,	  
centers	  k1, k2, ..., kk,	  and	  data	  
points	  xjs,	  we	  effec9vely	  minimise:

2
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possible	  remedies...

• run	  algorithm	  many	  9mes	  with	  different	  
values	  of	  k	  

• pick	  k	  that	  leads	  to	  lowest	  error	  without	  
overfiLng	  

• run	  algorithm	  from	  many	  star@ng	  points	  

• to	  avoid	  local	  minima
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noise?
•mean	  suscep9ble	  to	  outliers	  (very	  noisy	  data)	  

• one	  idea	  is	  to	  replace	  mean	  by	  median	  

• 1,2,1,2,100?	  	  

• mean:	  21.2	  (affected)	  

• median:	  2	  (not	  affected)

undesirable desirable
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strengths	  of	  k-‐means?

• simple:	  easy	  to	  understand	  and	  implement	  

• efficient	  with	  9me	  complexity	  O(tkn)	  

• n	  =	  #data	  points,	  k	  =	  #clusters,	  t	  =	  #itera9ons	  

• typically,	  k	  and	  t	  are	  small,	  so	  considered	  a	  
linear	  algorithm
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weaknesses?
• unable	  to	  handle	  noisy	  data/

outliers	  

!

• unsuitable	  for	  discovering	  
clusters	  with	  non-‐convex	  shapes	  	  

!

• k	  has	  to	  be	  specified	  in	  advance
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self-‐organising	  maps
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self-‐organising	  maps

• high	  dimensional	  data	  hard	  to	  understand	  
as	  is	  

• data	  visualisa@on	  and	  clustering	  technique	  
that	  reduces	  dimensions	  of	  data	  	  

• reduce	  dimensions	  by	  projec@ng	  and	  
displaying	  the	  similari@es	  between	  data	  
points	  on	  a	  1	  or	  2	  dimensional	  map
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a	  neural	  network	  with	  
topological	  meaning

• a	  SOM	  is	  an	  ar9ficial	  neural	  network	  
trained	  in	  an	  unsupervised	  manner	  

• the	  network	  is	  able	  to	  cluster	  data	  in	  a	  way	  
that	  topological	  rela@onships	  between	  
data	  points	  are	  preserved	  

• i.e.	  neurons	  close	  together	  represent	  
data	  points	  that	  are	  close	  together
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e.g.

1-‐D	  SOM	  clustering	  3-‐D	  RGB	  data

2-‐D	  SOM	  clustering	  3-‐D	  RGB	  data

#ff0000

#ff1100

#ff1122
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biological	  mo9va9on...
•mo9vated	  by	  how	  visual,	  auditory,	  and	  

other	  sensory	  informa@on	  is	  handled	  in	  
separate	  parts	  of	  the	  cerebral	  cortex	  in	  the	  
human	  brain	  

• sounds	  that	  are	  similar	  excite	  neurons	  that	  
are	  near	  to	  each	  other	  

• sounds	  that	  are	  very	  different	  excite	  
neurons	  that	  are	  a	  long	  way	  off	  

• input	  feature	  mapping!
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from	  mo9va9on	  to	  
inspira9on...

• so	  the	  idea	  is	  that	  learning	  should	  
selec@vely	  tune	  neurons	  close	  to	  each	  
other	  to	  respond	  to/represent	  a	  cluster	  of	  
data	  points	  	  

• first	  described	  as	  an	  ANN	  by	  Prof.	  Teuvo	  
Kohonen
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1,1

2,4

3,3	  

4,5

each	  node	  has	  a	  posi9on	  
associated	  with	  it	  on	  the	  map

SOM	  consists	  of	  components	  
called	  nodes/neurons

and	  a	  weight	  vector	  of	  
dimension	  given	  by	  the	  data	  

points	  (input	  vectors)
e.g.	  say,	  5D	  input	  vector
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weighted	  
connec9ons

feature/output/
map	  layer

input	  layer

and	  so	  on...	  	  
i.e.	  fully	  

connected
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neurons	  are	  
interconnected	  
within	  a	  defined	  
neighbourhood	  
(hexagonal	  here)	  
i.e.	  neighbourhood	  
rela@on	  defined	  on	  

output	  layer
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typically,	  
rectangular	  or	  

hexagonal	  la<ce	  
neighbourhood/
topology	  for	  2D	  

SOMs

46

j

x1 x2 x3 x4 xn

.	  .	  .

.	  .	  .
wj1

wj2
wj3 wj4

wjn

laLce	  responds	  
to	  input

one	  neuron	  wins,	  
i.e.	  has	  the	  highest	  

response	  
(known	  as	  the	  best	  
matching	  unit)

matchin
g?
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matching?

• input	  and	  weight	  vectors	  can	  be	  matched	  in	  
numerous	  ways	  

• 	  typically: euclidean

manhaUan

dot	  product
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adap@ng	  weights	  of	  
winner	  (and	  its	  

neighbourhood	  to	  a	  
lesser	  degree)	  to	  
closely	  resemble/
match	  inputs

j

x1 x2 x3 x4 xn

.	  .	  .

.	  .	  . ...and	  so	  on	  for	  all	  
neighbouring	  nodes...

learning...
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j

x1 x2 x3 x4 xn

.	  .	  .

.	  .	  . ...and	  so	  on	  with	  N(i,j)	  
deciding	  how	  much	  to	  
adapt	  a	  neighbour’s	  
weight	  vector

adap9ng	  
weights?
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N(i,j)	  is	  the	  
neighbourhood	  

func9on	  j

x1 x2 x3 x4 xn

.	  .	  .

.	  .	  .
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N(i,j)	  tells	  how	  close	  
a	  neuron	  i	  is	  from	  the	  
winning	  neuron	  jj

x1 x2 x3 x4 xn

.	  .	  .

.	  .	  .
the	  closer	  i	  is	  from	  j	  on	  
the	  la<ce,	  the	  higher	  is	  

N(i,j)
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j

i

x1 x2 x3 x4 xn

.	  .	  .

.	  .	  .

N(i,j)	  will	  be	  rather	  high	  
for	  this	  neuron!
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j

i

x1 x2 x3 x4 xn

.	  .	  .

.	  .	  .

but	  not	  as	  high	  	  
for	  this

so,	  update	  of	  weight	  
vector	  of	  this	  neuron	  

will	  be	  smaller

in	  other	  words,	  this	  
neuron	  will	  not	  be	  
moved	  as	  much	  

towards	  the	  input,	  as	  
compared	  to	  neurons	  

closer	  to	  j
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neurons	  compe@ng	  to	  match	  data	  point

summarising	  
learning...

one	  winning

adap@ng	  its	  weights	  towards	  data	  
point	  and	  bringing	  la<ce	  

neighbours	  along
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with	  such	  learning...
• we	  end	  up	  finding	  weight	  vectors	  for	  all	  

neurons	  in	  such	  a	  way	  that	  adjacent	  
neurons	  will	  have	  similar	  weight	  vectors!	  

• for	  any	  input	  vector,	  the	  output	  of	  the	  
network	  will	  be	  the	  neuron	  whose	  weight	  
vector	  best	  matches	  the	  input	  vector	  

• so,	  each	  (weight	  vector	  of	  a)	  neuron	  is	  the	  
center	  of	  the	  cluster	  containing	  all	  input	  
data	  points	  mapped	  to	  this	  neuron
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j

i

x1 x2 x3 x4 xn

.	  .	  .

.	  .	  .

N(i,j)	  is	  such	  that	  the	  
neighbourhood	  of	  a	  
winning	  neuron	  

reduces	  with	  9me	  as	  
the	  learning	  proceeds

the	  learning	  rate	  
reduces	  with	  9me	  as	  

well
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j

at	  the	  beginning	  of	  
learning	  the	  en9re	  
laLce	  could	  be	  the	  
neighbourhood	  of	  

neuron	  j

weight	  update	  for	  all	  
neurons	  will	  happen	  in	  

this	  situa9on
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j

at	  some	  point	  later,	  this	  
could	  be	  the	  

neighbourhood	  of	  j

weight	  update	  for	  only	  
the	  4	  neurons	  and	  j	  will	  

happen
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j

much	  further	  on...

weight	  update	  for	  only	  j	  
will	  happen

typically,	  N(i,j)	  is	  a	  
gaussian	  func9on	  
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three	  essen9al	  processes
• compe@@on	  -‐	  finding	  the	  best	  matching	  

unit/winner,	  given	  an	  input	  vector	  

• coopera@on	  -‐	  neurons	  topologically	  close	  
to	  winner	  get	  to	  be	  part	  of	  the	  win,	  so	  as	  to	  
become	  sensi9ve	  to	  inputs	  similar	  to	  this	  
input	  vector	  	  

•weight	  adapta@on	  -‐	  is	  how	  the	  winner	  and	  
neighbour’s	  weights	  move	  towards	  and	  
represent	  similar	  input	  vectors,	  which	  are	  
clustered	  under	  them
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size	  of	  the	  network?
•we	  determine	  the	  size	  
• big	  network?	  	  
• each	  neuron	  represents	  each	  input	  

vector!	  	  
• not	  much	  generalisa9on!	  
• small	  network?	  
• too	  much	  generalisa9on!	  
• no	  differen9a9on!	  
• try	  different	  sizes	  and	  pick	  the	  best...
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62

performance	  
measures?

• quan@za@on	  error:	  average	  
distance	  between	  each	  input	  
vector	  and	  respec9ve	  winning	  
neuron	  

• topographic	  error:	  propor9on	  
of	  input	  vectors	  for	  which	  
winning	  and	  second	  place	  
neuron	  are	  not	  adjacent	  in	  
the	  laLce
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self-‐organising?

• global	  ordering	  from	  local	  interac@ons	  

• each	  neuron	  interacts	  only	  with	  its	  
neighbours	  via	  N(i,j)	  

• but	  the	  network	  ends	  up	  clustering	  and	  
preserving	  topological	  rela9onships	  in	  
data
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visualising	  the	  resul9ng	  
SOM?

•once	  the	  network	  organises	  itself	  over	  data,	  
how	  do	  we	  visualise	  it?	  

• neurons	  have	  weights	  of	  input	  vector	  
dimensions!	  

• how	  to	  see	  the	  discovered	  similari9es/
dissimilari9es	  in	  data	  in	  the	  map	  space?	  

• U-‐matrix	  (unified	  distance	  matrix)	  is	  one	  
way
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e.g.	  from	  SOM	  toolbox	  
h^p://www.cis.hut.fi/somtoolbox/

weight	  distances	  between	  the	  adjacent	  
neurons	  are	  calculated	  and	  shown	  in	  

respec9ve	  shades/heatmap neurons	  with	  labels
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advantages?

• good	  for	  visualisa@on	  and	  interpretability	  

• good	  for	  classifica@on	  problems	  

• high	  sensi@vity	  to	  frequent/relevant	  
inputs	  

• new	  ways	  of	  associa9ng	  related	  data
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disadvantages?

• system	  is	  a	  black	  box	  

• a	  large	  training	  set	  may	  be	  required	  

• for	  large	  problems,	  training	  can	  be	  lengthy	  

• can	  be	  difficult	  to	  come	  up	  with	  an	  input	  
vector

SOM Toolbox with demo code: http://www.cis.hut.fi/somtoolbox/
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recent	  fun	  research…
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topic	  modelling
• finding	  underlying	  structure	  

in	  a	  massive	  document	  
collec9on	  (e.g.	  wikipedia!)	  

• topic	  =	  subset	  of	  terms	  in	  an	  
ar9cle	  

• ar9cles	  containing	  term	  
subsets	  in	  similar	  
propor@ons	  

!
e.g. automatic document organiser and browser
http://www.princeton.edu/~achaney/tmve/
wiki100k/browse/topic-list.html

<"
TOPIC MODELS 7
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Top Ten Similar Documents

Exhaustive Matching of the Entire Protein Sequence Database

How Big Is the Universe of Exons?

Counting and Discounting the Universe of Exons

Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for Multiple Alignment

Ancient Conserved Regions in New Gene Sequences and the Protein Databases

A Method to Identify Protein Sequences that Fold into a Known Three- Dimensional Structure

Testing the Exon Theory of Genes: The Evidence from Protein Structure
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the assignment of words to topics in the abstract of the article, and the top
ten most similar articles.

3. POSTERIOR INFERENCE FOR LDA

The central computational problem for topic modeling with LDA is ap-
proximating the posterior in Eq. (2). This distribution is the key to using
LDA for both quantitative tasks, such as prediction and document general-
ization, and the qualitative exploratory tasks that we discuss here. Several
approximation techniques have been developed for LDA, including mean
field variational inference (Blei et al., 2003), collapsed variational infer-
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observed variables. This conditional 
distribution is also called the posterior 
distribution.

LDA falls precisely into this frame-
work. The observed variables are the 
words of the documents; the hidden 
variables are the topic structure; and 
the generative process is as described 
here. The computational problem of 
inferring the hidden topic structure 
from the documents is the problem of 
computing the posterior distribution, 
the conditional distribution of the hid-
den variables given the documents.

We can describe LDA more formally 
with the following notation. The topics 
are b1:K, where each bk is a distribution 
over the vocabulary (the distributions 
over words at left in Figure 1). The topic 
proportions for the dth document are 
qd, where q d,k is the topic proportion 
for topic k in document d (the car-
toon histogram in Figure 1). The topic 
assignments for the dth document are 
zd, where zd,n is the topic assignment 
for the nth word in document d (the 
colored coin in Figure 1). Finally, the 
observed words for document d are wd, 
where wd,n is the nth word in document 
d, which is an element from the fixed 
vocabulary.

With this notation, the generative 
process for LDA corresponds to the fol-
lowing joint distribution of the hidden 
and observed variables,

 (1)

Notice that this distribution specifies a 
number of dependencies. For example, 
the topic assignment zd,n depends on 
the per-document topic proportions 
q d. As another example, the observed 
word wd,n depends on the topic assign-
ment zd,n and all of the topics b1:K. 
(Operationally, that term is defined by 
looking up as to which topic zd,n refers 
to and looking up the probability of the 
word wd,n within that topic.)

These dependencies define LDA. 
They are encoded in the statistical 
assumptions behind the generative 
process, in the particular mathemati-
cal form of the joint distribution, and—
in a third way—in the probabilistic 
graphical model for LDA. Probabilistic 
graphical models provide a graphical 

language for describing families of 
probability distributions.e The graphi-
cal model for LDA is in Figure 4. These 
three representations are equivalent 
ways of describing the probabilistic 
assumptions behind LDA.

In the next section, we describe 
the inference algorithms for LDA. 
However, we first pause to describe the 
short history of these ideas. LDA was 
developed to fix an issue with a previ-
ously developed probabilistic model 
probabilistic latent semantic analysis 
(pLSI).21 That model was itself a prob-
abilistic version of the seminal work 
on latent semantic analysis,14 which 
revealed the utility of the singular value 
decomposition of the document-term 
matrix. From this matrix factorization 
perspective, LDA can also be seen as a 
type of principal component analysis 
for discrete data.11, 12

Posterior computation for LDA. 
We now turn to the computational 

e The field of graphical models is actually more 
than a language for describing families of 
distributions. It is a field that illuminates the 
deep mathematical links between probabi-
listic independence, graph theory, and algo-
rithms for computing with probability distri-
butions.35

Figure 3. A topic model fit to the Yale Law Journal. Here, there are 20 topics (the top eight are plotted). Each topic is illustrated with its top-
most frequent words. Each word’s position along the x-axis denotes its specificity to the documents. For example “estate” in the first topic 
is more specific than “tax.”
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observed variables. This conditional 
distribution is also called the posterior 
distribution.

LDA falls precisely into this frame-
work. The observed variables are the 
words of the documents; the hidden 
variables are the topic structure; and 
the generative process is as described 
here. The computational problem of 
inferring the hidden topic structure 
from the documents is the problem of 
computing the posterior distribution, 
the conditional distribution of the hid-
den variables given the documents.

We can describe LDA more formally 
with the following notation. The topics 
are b1:K, where each bk is a distribution 
over the vocabulary (the distributions 
over words at left in Figure 1). The topic 
proportions for the dth document are 
qd, where q d,k is the topic proportion 
for topic k in document d (the car-
toon histogram in Figure 1). The topic 
assignments for the dth document are 
zd, where zd,n is the topic assignment 
for the nth word in document d (the 
colored coin in Figure 1). Finally, the 
observed words for document d are wd, 
where wd,n is the nth word in document 
d, which is an element from the fixed 
vocabulary.

With this notation, the generative 
process for LDA corresponds to the fol-
lowing joint distribution of the hidden 
and observed variables,

 (1)

Notice that this distribution specifies a 
number of dependencies. For example, 
the topic assignment zd,n depends on 
the per-document topic proportions 
q d. As another example, the observed 
word wd,n depends on the topic assign-
ment zd,n and all of the topics b1:K. 
(Operationally, that term is defined by 
looking up as to which topic zd,n refers 
to and looking up the probability of the 
word wd,n within that topic.)

These dependencies define LDA. 
They are encoded in the statistical 
assumptions behind the generative 
process, in the particular mathemati-
cal form of the joint distribution, and—
in a third way—in the probabilistic 
graphical model for LDA. Probabilistic 
graphical models provide a graphical 

language for describing families of 
probability distributions.e The graphi-
cal model for LDA is in Figure 4. These 
three representations are equivalent 
ways of describing the probabilistic 
assumptions behind LDA.

In the next section, we describe 
the inference algorithms for LDA. 
However, we first pause to describe the 
short history of these ideas. LDA was 
developed to fix an issue with a previ-
ously developed probabilistic model 
probabilistic latent semantic analysis 
(pLSI).21 That model was itself a prob-
abilistic version of the seminal work 
on latent semantic analysis,14 which 
revealed the utility of the singular value 
decomposition of the document-term 
matrix. From this matrix factorization 
perspective, LDA can also be seen as a 
type of principal component analysis 
for discrete data.11, 12

Posterior computation for LDA. 
We now turn to the computational 

e The field of graphical models is actually more 
than a language for describing families of 
distributions. It is a field that illuminates the 
deep mathematical links between probabi-
listic independence, graph theory, and algo-
rithms for computing with probability distri-
butions.35

Figure 3. A topic model fit to the Yale Law Journal. Here, there are 20 topics (the top eight are plotted). Each topic is illustrated with its top-
most frequent words. Each word’s position along the x-axis denotes its specificity to the documents. For example “estate” in the first topic 
is more specific than “tax.”
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FIGURE 4. The analysis of a document from Science. Doc-
ument similarity was computed using Eq. (4); topic words
were computed using Eq. (3).

the assignment of words to topics in the abstract of the article, and the top
ten most similar articles.

3. POSTERIOR INFERENCE FOR LDA

The central computational problem for topic modeling with LDA is ap-
proximating the posterior in Eq. (2). This distribution is the key to using
LDA for both quantitative tasks, such as prediction and document general-
ization, and the qualitative exploratory tasks that we discuss here. Several
approximation techniques have been developed for LDA, including mean
field variational inference (Blei et al., 2003), collapsed variational infer-
ence (Teh et al., 2006), expectation propagation (Minka and Lafferty, 2002),
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observed variables. This conditional 
distribution is also called the posterior 
distribution.

LDA falls precisely into this frame-
work. The observed variables are the 
words of the documents; the hidden 
variables are the topic structure; and 
the generative process is as described 
here. The computational problem of 
inferring the hidden topic structure 
from the documents is the problem of 
computing the posterior distribution, 
the conditional distribution of the hid-
den variables given the documents.

We can describe LDA more formally 
with the following notation. The topics 
are b1:K, where each bk is a distribution 
over the vocabulary (the distributions 
over words at left in Figure 1). The topic 
proportions for the dth document are 
qd, where q d,k is the topic proportion 
for topic k in document d (the car-
toon histogram in Figure 1). The topic 
assignments for the dth document are 
zd, where zd,n is the topic assignment 
for the nth word in document d (the 
colored coin in Figure 1). Finally, the 
observed words for document d are wd, 
where wd,n is the nth word in document 
d, which is an element from the fixed 
vocabulary.

With this notation, the generative 
process for LDA corresponds to the fol-
lowing joint distribution of the hidden 
and observed variables,

 (1)

Notice that this distribution specifies a 
number of dependencies. For example, 
the topic assignment zd,n depends on 
the per-document topic proportions 
q d. As another example, the observed 
word wd,n depends on the topic assign-
ment zd,n and all of the topics b1:K. 
(Operationally, that term is defined by 
looking up as to which topic zd,n refers 
to and looking up the probability of the 
word wd,n within that topic.)

These dependencies define LDA. 
They are encoded in the statistical 
assumptions behind the generative 
process, in the particular mathemati-
cal form of the joint distribution, and—
in a third way—in the probabilistic 
graphical model for LDA. Probabilistic 
graphical models provide a graphical 

language for describing families of 
probability distributions.e The graphi-
cal model for LDA is in Figure 4. These 
three representations are equivalent 
ways of describing the probabilistic 
assumptions behind LDA.

In the next section, we describe 
the inference algorithms for LDA. 
However, we first pause to describe the 
short history of these ideas. LDA was 
developed to fix an issue with a previ-
ously developed probabilistic model 
probabilistic latent semantic analysis 
(pLSI).21 That model was itself a prob-
abilistic version of the seminal work 
on latent semantic analysis,14 which 
revealed the utility of the singular value 
decomposition of the document-term 
matrix. From this matrix factorization 
perspective, LDA can also be seen as a 
type of principal component analysis 
for discrete data.11, 12

Posterior computation for LDA. 
We now turn to the computational 

e The field of graphical models is actually more 
than a language for describing families of 
distributions. It is a field that illuminates the 
deep mathematical links between probabi-
listic independence, graph theory, and algo-
rithms for computing with probability distri-
butions.35

Figure 3. A topic model fit to the Yale Law Journal. Here, there are 20 topics (the top eight are plotted). Each topic is illustrated with its top-
most frequent words. Each word’s position along the x-axis denotes its specificity to the documents. For example “estate” in the first topic 
is more specific than “tax.”
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observed variables. This conditional 
distribution is also called the posterior 
distribution.

LDA falls precisely into this frame-
work. The observed variables are the 
words of the documents; the hidden 
variables are the topic structure; and 
the generative process is as described 
here. The computational problem of 
inferring the hidden topic structure 
from the documents is the problem of 
computing the posterior distribution, 
the conditional distribution of the hid-
den variables given the documents.

We can describe LDA more formally 
with the following notation. The topics 
are b1:K, where each bk is a distribution 
over the vocabulary (the distributions 
over words at left in Figure 1). The topic 
proportions for the dth document are 
qd, where q d,k is the topic proportion 
for topic k in document d (the car-
toon histogram in Figure 1). The topic 
assignments for the dth document are 
zd, where zd,n is the topic assignment 
for the nth word in document d (the 
colored coin in Figure 1). Finally, the 
observed words for document d are wd, 
where wd,n is the nth word in document 
d, which is an element from the fixed 
vocabulary.

With this notation, the generative 
process for LDA corresponds to the fol-
lowing joint distribution of the hidden 
and observed variables,

 (1)

Notice that this distribution specifies a 
number of dependencies. For example, 
the topic assignment zd,n depends on 
the per-document topic proportions 
q d. As another example, the observed 
word wd,n depends on the topic assign-
ment zd,n and all of the topics b1:K. 
(Operationally, that term is defined by 
looking up as to which topic zd,n refers 
to and looking up the probability of the 
word wd,n within that topic.)

These dependencies define LDA. 
They are encoded in the statistical 
assumptions behind the generative 
process, in the particular mathemati-
cal form of the joint distribution, and—
in a third way—in the probabilistic 
graphical model for LDA. Probabilistic 
graphical models provide a graphical 

language for describing families of 
probability distributions.e The graphi-
cal model for LDA is in Figure 4. These 
three representations are equivalent 
ways of describing the probabilistic 
assumptions behind LDA.

In the next section, we describe 
the inference algorithms for LDA. 
However, we first pause to describe the 
short history of these ideas. LDA was 
developed to fix an issue with a previ-
ously developed probabilistic model 
probabilistic latent semantic analysis 
(pLSI).21 That model was itself a prob-
abilistic version of the seminal work 
on latent semantic analysis,14 which 
revealed the utility of the singular value 
decomposition of the document-term 
matrix. From this matrix factorization 
perspective, LDA can also be seen as a 
type of principal component analysis 
for discrete data.11, 12

Posterior computation for LDA. 
We now turn to the computational 

e The field of graphical models is actually more 
than a language for describing families of 
distributions. It is a field that illuminates the 
deep mathematical links between probabi-
listic independence, graph theory, and algo-
rithms for computing with probability distri-
butions.35

Figure 3. A topic model fit to the Yale Law Journal. Here, there are 20 topics (the top eight are plotted). Each topic is illustrated with its top-
most frequent words. Each word’s position along the x-axis denotes its specificity to the documents. For example “estate” in the first topic 
is more specific than “tax.”
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ument similarity was computed using Eq. (4); topic words
were computed using Eq. (3).

the assignment of words to topics in the abstract of the article, and the top
ten most similar articles.

3. POSTERIOR INFERENCE FOR LDA

The central computational problem for topic modeling with LDA is ap-
proximating the posterior in Eq. (2). This distribution is the key to using
LDA for both quantitative tasks, such as prediction and document general-
ization, and the qualitative exploratory tasks that we discuss here. Several
approximation techniques have been developed for LDA, including mean
field variational inference (Blei et al., 2003), collapsed variational infer-
ence (Teh et al., 2006), expectation propagation (Minka and Lafferty, 2002),
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FIGURE 4. The analysis of a document from Science. Doc-
ument similarity was computed using Eq. (4); topic words
were computed using Eq. (3).

the assignment of words to topics in the abstract of the article, and the top
ten most similar articles.

3. POSTERIOR INFERENCE FOR LDA

The central computational problem for topic modeling with LDA is ap-
proximating the posterior in Eq. (2). This distribution is the key to using
LDA for both quantitative tasks, such as prediction and document general-
ization, and the qualitative exploratory tasks that we discuss here. Several
approximation techniques have been developed for LDA, including mean
field variational inference (Blei et al., 2003), collapsed variational infer-
ence (Teh et al., 2006), expectation propagation (Minka and Lafferty, 2002),
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Inventors webpage with code to play with:
http://www.cs.princeton.edu/~blei/topicmodeling.html
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