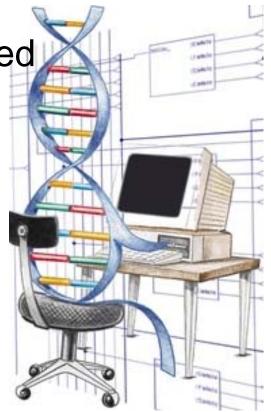
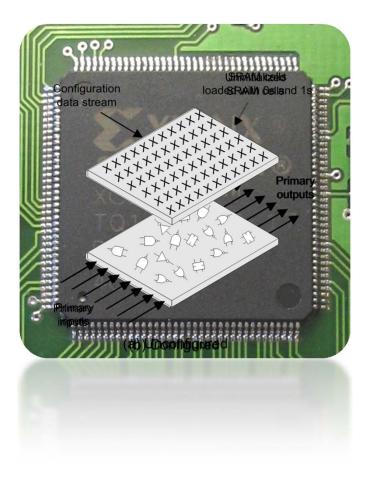


Kyrre Glette – kyrrehg@ifi INF3490 – Evolvable Hardware Cartesian Genetic Programming

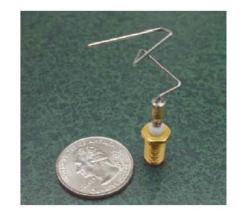

Overview

- Introduction to Evolvable Hardware (EHW)
- Cartesian Genetic Programming
- Applications of EHW

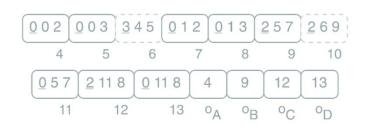
UiO **Department of Informatics** University of Oslo

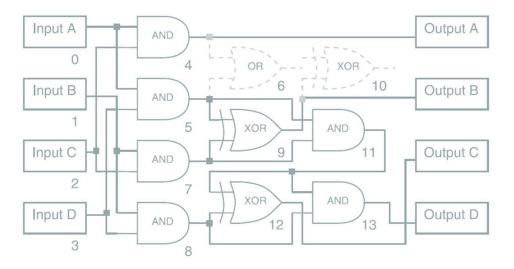

Evolvable Hardware (EHW)

- Hardware systems designed/ modified automatically by EAs
- A string of symbols/bits is evolved by an EA and translated into a HW system
- Offline EHW
 - Solutions are simulated in a PC
- Online EHW
 - Solutions are tested on target HW


EHW

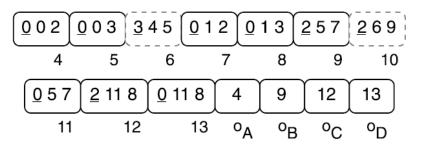
- FPGA
 - Reconfigurable hardware chip
 - Useful for online EHW
- On-chip evolution
 - EA running on the target chip, together with solutions
- Run-time adaptable EHW
 - Evolution can modify the system during operation

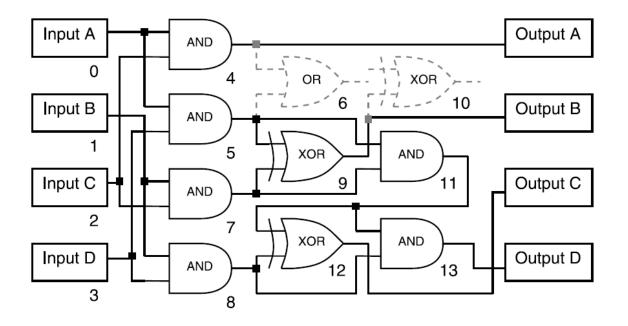

Applications of EHW


- Pattern recognition / classification circuits
- Digital image filters
- Evolution of analog circuits
- Cache mapping functions
- On-the-fly compression for printers
- Spacecraft antenna

UiO **Department of Informatics**

University of Oslo

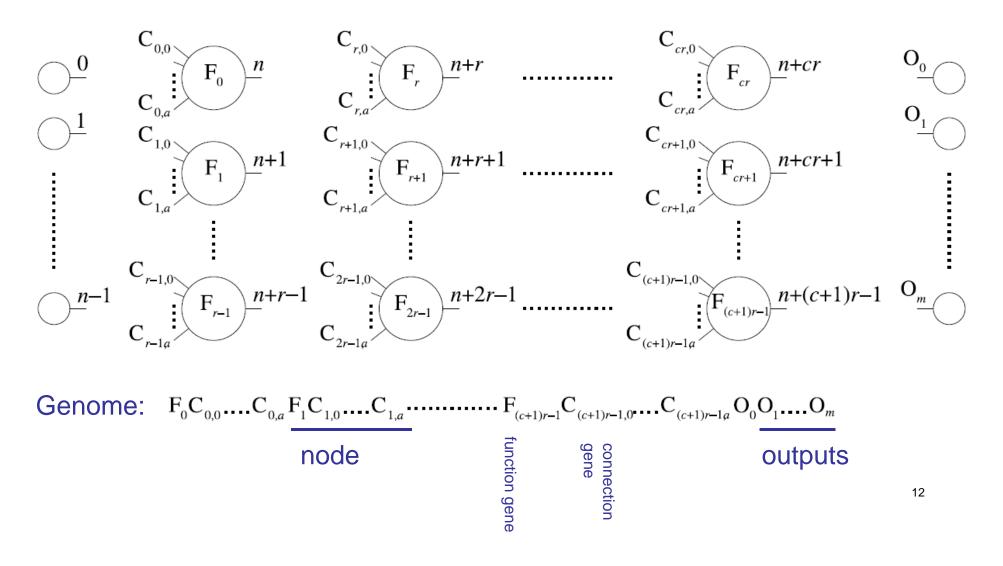



CARTESIAN GENETIC PROGRAMMING

Cartesian Genetic Programming (CGP)

- A type of Genetic Programming
- Allows restrictions compared to general GP:
 - Integer genome
 - Tree nodes are mapped to a grid
 - Connectivity can be restricted
- Popular in Evolvable Hardware applications
 - But can be used for many other things as well

Example structure: Digital circuit


CGP genome

- Internal node genes:
 - Node type: index to lookup table of functions
 - Inputs: index of other nodes
 - Optional: additional parameters
- Output node gene:
 - Internal node index

CGP parameters

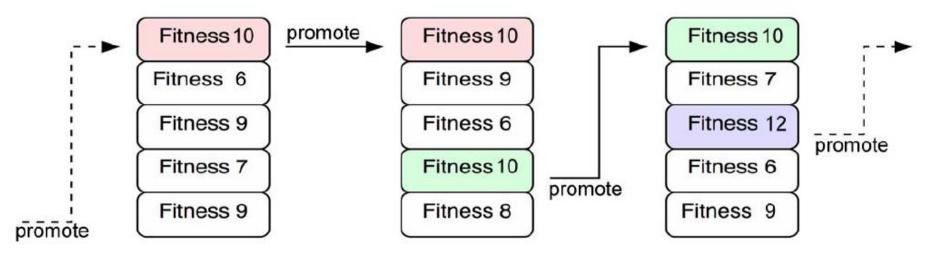
- Columns: *n_c*
- Rows: *n*₁
- Levels-back: /
 - How many of the previous columns a node can connect to
- Columns x rows defines the maximum number of nodes in the graph

General structure

Advantages of CGP

- Easy implementation
 - Fixed genome size and simple representation
 - Simple mutation and crossover
- Bloat is restricted
 - The number of nodes is restricted
- Regular structure suitable for e.g. hardware implementation
 - A grid structure with limited connectivity ideal for HW routing

Other features of CGP


- Reuse of parts of the tree is possible
- Allows multiple outputs
- Parts of the genome may be non-coding
 - This has an analogy in biology, where only a fraction of the DNA is composed of *exons* ("coding" genes).
 - The other part is called *introns* (non-coding genes, sometimes called "junk" DNA). It is however believed that these are useful for something.
 - Likewise, the genetic redundancy (neutrality) in CGP is thought to be positive for the evolutionary search.

Genetic operations in CGP

- Mutation
 - Select randomly a number of genes to mutate
 - Change to new (valid) random values
- Crossover
 - One-point crossover or other variants directly on the genome
- Usually only mutations are used
 - Many applications find crossover to have a destructive effect - it disrupts the tree structure too much

Evolution in CGP

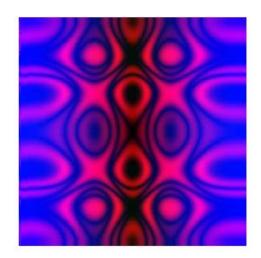
- The most popular is a variant of ES called (1+4) ES
- Choose children which have >= fitness than parent

CGP can code:

- Circuits
- Mathematical functions / equations

17

- Neural networks
- Programs

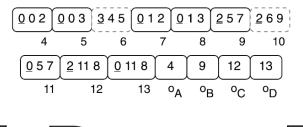

. . .

• Machine learning structures

UiO **Department of Informatics** University of Oslo

Example: Art

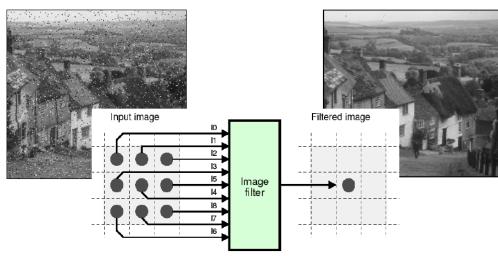
- Inputs: image pixel position x,y
- Outputs: r,g,b intensities per pixel
 - Or single monochrome intensity
- r = fl(x, y)
- g = f2(x, y)
- b = f3(x,y)


Function gene	Function definition
0	x
1	у
2	$\sqrt{x + y}$
3	$\sqrt{ x-y }$
4	$255(\sin(\frac{2\pi}{255}x) + \cos(\frac{2\pi}{255}y))/2$
5	$255(\cos(\frac{2\pi}{255}x) + \sin(\frac{2\pi}{255}y))/2$
6	$255(\cos(\frac{3\pi}{255}x) + \sin(\frac{2\pi}{255}y))/2$
7	$\exp(x + y) \pmod{256}$
8	$ \sinh(x+y) \pmod{256}$
	10

UiO **Department of Informatics** University of Oslo

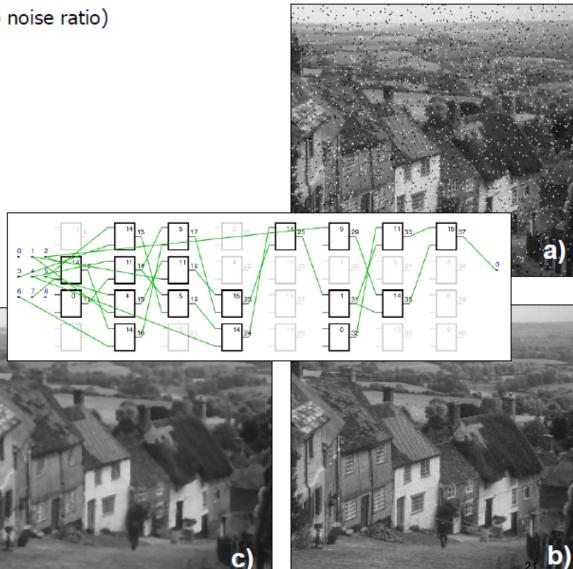
Example: Evolvable Hardware 1

- Evolution of combinational circuit, e.g. multiplier
- 2-bit multiplier:
 2x2=4 inputs
 4 outputs
- Fitness:


correct output combinations (of 16)

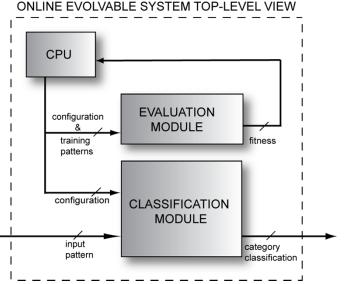
Example: Evolvable Hardware 2

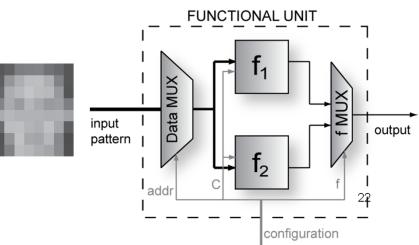
- Evolution of digital image filters
- Input: distorted image
- Output: filtered image
- Fitness: distance between filtered and original image



Number	Function	Description
0	$x \lor y$	binary or
1	$x \wedge y$	binary and
2	$x\oplus y$	binary xor
3	x + y	addition
4	$x + y^s$	addition with saturation
5	(x+y) >> 1	average
6	Max(x, y)	maximum
7	Min(x, y)	minimum

Example result (Slide from Sekanina)


- a) Image corrupted by 5% salt-and-pepper noise PSNR: 18.43 dB (peak signal to noise ratio)
- b) Original image
- c) Median filter (kernel 3x3) PSNR: 27.92 dB 268 FPGA slices; 305 MHz
- d) Evolved filter (kernel 3x3)
 PSNR: 37.50 dB
 200 FPGA slices; 308 MHz



Example: EHW 3 (ROBIN group)

- Evolution of HW classifiers
 - Input: signal to be classified
 - Output: classification result
- Fitness:
 - # correctly classified training samples
- Ensemble model
- On-chip system

Challenges of EHW

- Scalability It's hard to evolve large systems!
 - General challenge in EC
 - Evolution of larger combinational circuits is difficult
 - Large and difficult search space
 - Time-consuming fitness function
 - 4x4 multiplier is hard
- On-chip evolution
 - Less flexibility offered by HW
 - Reconfiguration can be challenging

Kyrre Glette – kyrrehg@ifi INF3490 – Swarm Intelligence Particle Swarm Optimization

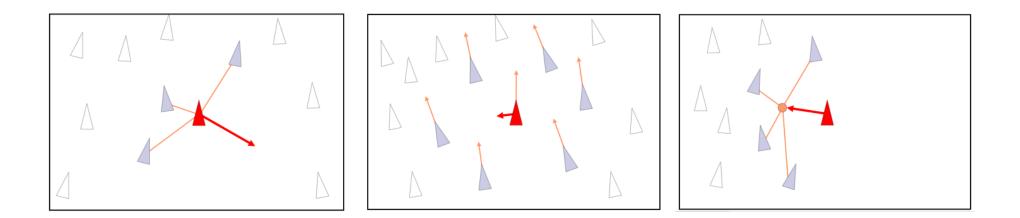
Overview

- Introduction to swarm intelligence principles
- Particle Swarm Optimization (in depth)
- Stigmergy, pheromones, and ACO (briefly)
- Swarm robotics (briefly)

Swarms in nature

http://youtu.be/kdECYXdW9Tc

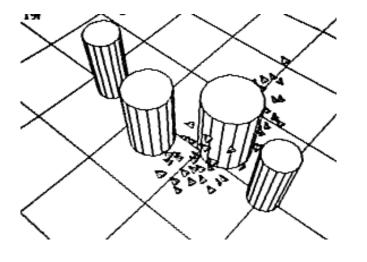
Fish, birds, ants, termites, ...

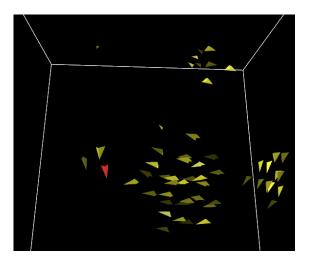


Key features

- Simple local rules
- Local interaction
- Decentralized control
- Complex global behavior
 - Difficult to predict from observing the local rules
 - Emergent behavior

Flocking model – "boids"


Separation – avoid crowding


Alignment – steer towards average heading

Cohesion – steer towards average position

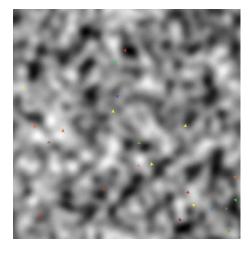
Only considering the boid's neighborhood

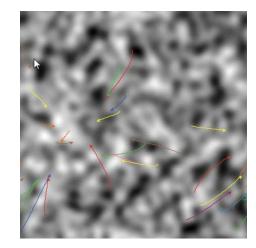

Result - boids

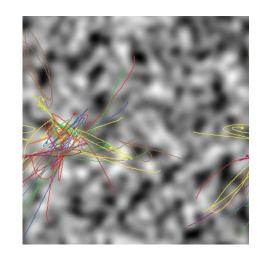
Original: <u>http://youtu.be/86iQiV3-3IA</u> Netlogo: "Flocking 3D Alternate" model

Application: Computer graphics

http://youtu.be/-jF5sAqBp4w


Applications in bio-inspired computing


- Particle swarm optimization
 - Parameter optimization
- Ant colony optimization
 - Graph-based optimization problems (e.g. TSP)
- Artificial immune systems
 - Classification, anomaly detection
- Swarm robotics
 - Achieve complex behavior in robotic swarms through simple local rules



Particle Swarm Optimization (PSO)

Optimizes a population of solutions
 – A swarm of particles

Principle

- Evaluate your present position
- Compare it to your previous best and neighborhood best
- Imitate self and others

Simplified PSO algorithm

- For each particle *i* in the swarm
 - Calculate fitness
 - Update local best
 - Find neighborhood best
 - Update velocity
 - Update position

UiO **Department of Informatics** University of Oslo

PSO update formulas

For each dimension *d* in particle *i*:

1. Velocity update

$$v_{id}^{(t+1)} \leftarrow \alpha v_{id}^{(t)} + U(0,\beta) \left(p_{id} - x_{id}^{(t)} \right) + U(0,\beta) \left(p_{gd} - x_{id}^{(t)} \right)$$

inertia

direction personal best direction neighborhood best

2. Position update

$$x_{id}^{(t+1)} \leftarrow x_{id}^{(t)} + v_{id}^{(t+1)}$$

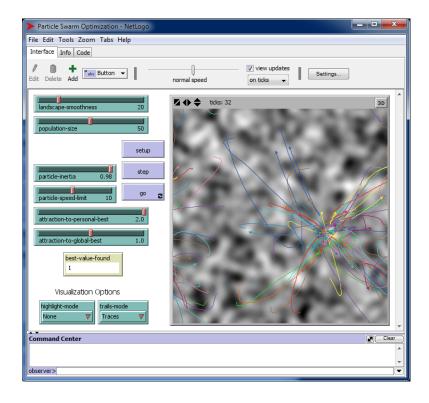
UiO **Department of Informatics** University of Oslo

What happens?

- A particle circles around in a region centered between the bests of itself and its neighbors
- The bests are updated and the particles cluster around better regions in the search space
- The way good solutions are propagated depends on how we define the neighborhood

Neighborhood topologies

- *gbest*: all particles are connected
 - Every particle gets information about the global best value
 - Can converge (too) fast
- Ibest: connected to K nearest neighbors in a wrapped population array
 - Slower convergence, depending on *K*
 - More areas are searched in parallel
- Several other topologies exist


PSO parameters

- Particle:
 - Usually a D-dimensional vector of real values
 - Binary variant exists
- Swarm size: usually 10 < N < 100
- Recommended $\alpha = 0.7298$
- Recommended $\beta = 1.4961$

UiO **Department of Informatics** University of Oslo

Parameter experimentation

- NetLogo
 - Particle Swarm
 Optimization model
- Model uses gbest
 neighborhood
- Download and try

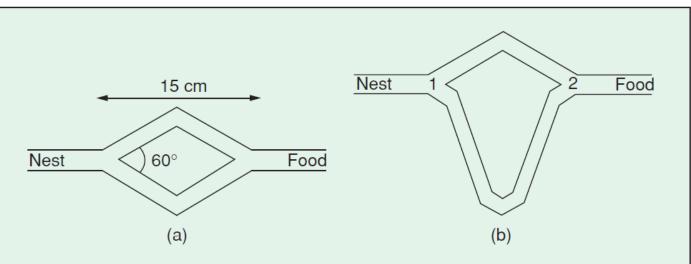
Advantages of PSO

- Few parameters
- Gradient free
- Decentralized control (depends on variant.)
- Simple to understand basic principle
- Simple to implement

PSO vs. Evolutionary Algorithms

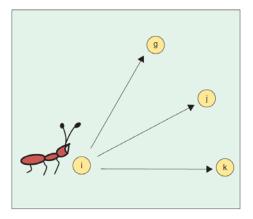
- Both are population based
- PSO: No selection all particles survive
- Information exchange between solutions:
 - PSO: neighborhood best
 - GA: crossover (and selection)

PSO applications


- Similar application areas as EAs
 - Most optimization problems
- Image and video analysis
- Electricity network optimization
- Neural networks
- . . .

Stigmergy

• Ants deposit a substance called *pheromone* when walking to and from food sources


Other ants can sense this and follow the same path

• This kind of communication through the environment is called *stigmergy*

Ant Colony Optimisation (ACO)

- Inspired by ants' use of pheromones
- Ants construct solutions in a graph
 - Probability of choosing a new edge is proportional with its pheromone level
- Pheromone update on edges
 - (Good) solutions deposit pheromones
 - Old pheromones evaporate

ACO applications

- Telecomunication networks
- Scheduling problems
- Vehicle routing (truck fleet)

• Further reading:

. . .

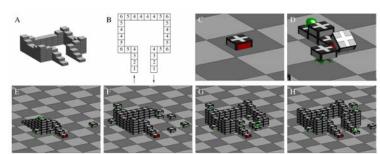
M. Dorigo et al, *Ant Colony Optimization – Artificial Ants as a Computational Intelligence Technique*, IEEE Computational Intelligence Magazine, Nov. 2006

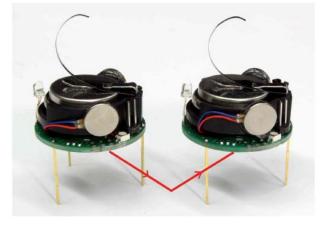
UiO **Department of Informatics** University of Oslo

Swarm robotics

- Inspired by nature's swarms
 - Simple rules
 - Local interaction
 - Decentralized control
 - Complex global behavior (soon?)
- Advantages
 - Cheap components
 - No single point of failure
 - Many configurations possible
- Possible applications
 - Search and rescue
 - Remote area exploration
 - Construction

https://youtu.be/NDjTqQ7xbWQ


UiO **Department of Informatics** University of Oslo


Swarm robotics examples

- Swarmbot <u>http://youtu.be/h-2D-zIU-DQ</u>
 - Collaborating robots
- TERMES <u>http://youtu.be/tCJMG0Jnodc</u>
 - Termite-inspired algorithmic self-assembly

- Large scale swarm, very simple control and communication
- Nano Quadrotors https://youtu.be/UQzuL60V9ng
 - Flocking-like rules for formation flying

