

UiO Department of Informatics
University of Oslo

INF3490 - Biologically inspired computing

Lecture 16 November 2015 Summary & Questions

Jim Tørresen

INF3490/4490 Exam

- Format: Written
- When: December 9, at 09:00 (4 hours)
- "Closed book exam": No materials are permitted on the exam
- Location: See
 http://www.uio.no/studier/emner/matnat/ifi/
 INF3490/h15/eksamen/index.html
- http://www.uio.no/studier/emner/matnat/ifi/ INF4490/h15/eksamen/index.html
- Same exam in INF4490 as in INF3490

Multiple-choice Questions on Parts of the Exam

The exam text consists of problems 1-30 (multiple choice questions) to be answered on the form that is enclosed in the appendix and problems 31-3? which are answered on the usual sheets. Problems 1-30 have a total weight of 60%, while problems 31-3? have a weight of 40%.

About problem 1-30:

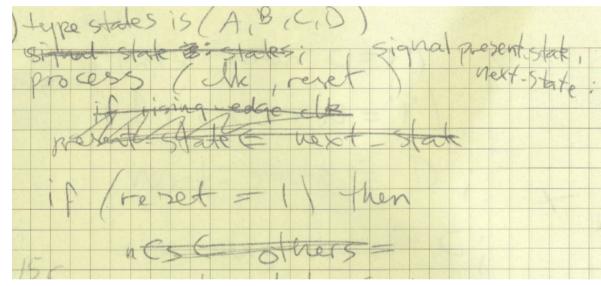
Each problem consists of a topic in the left column and a number of statements each indicated by a capital letter. Problems are answered by marking true statements with a clear cross (X) in the corresponding row and column in the attached form, and leaving false statements unmarked. Each problem has a variable number of true statements, but there is always *at least one* true and false statement for each problem. 0.5 points are given for each marked true statement and for each false statement left unmarked, resulting in a score ranging from 0 to 60.

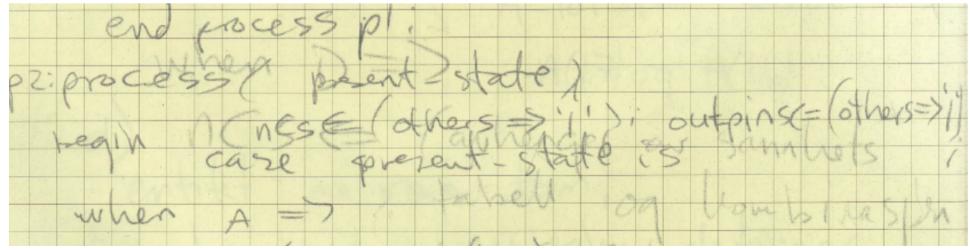
You can use the right column of the text as a draft. The form in the appendix is the one to be handed in (remember to include your candidate number).

Problem 1

Biologically inspired	A	Topic for a course at IFI	
computing	B Is mostly relevant for safety-critical systems		
	C Evolutionary computing is included in this field		
	D	Must be programmed in a specific language	

Reply on Multiple-choice Questions on Attached Form


Appendix 1


INF3490/INF4490 Answers problems 1 – 30 for candidate no: _____

Problem	A	В	C	D
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				

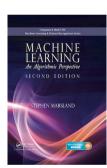
UiO • Department of Informatics
University of Oslo

Please Make Sure you can Read what you Write...

username: authorization

password: complete

INF3490/INF4490

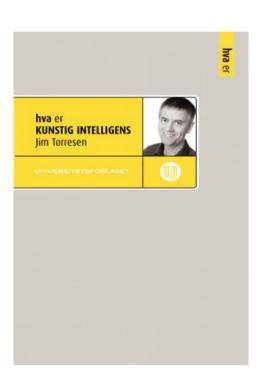

Syllabus: See more details on the web page

- Selected parts of the following books (details on course web page):
 - A.E. Eiben and J.E. Smith: Introduction to Evolutionary Computing, Second Edition (ISBN 978-3-662-44873-1) OR 2nd printing, 2007 (ISBN: 978-3-540-40184-1). Springer.
 - S. Marsland: Machine learning: An Algorithmic Perspective.
 ISBN: 978-1466583283
 - On-line papers (on the course web page).
- The lecture notes.

Obligatory Exercises:

- Two exercises on evolutionary algorithms and machine learning.
- Students registered for INF4490 will be given additional tasks in the excercises.

UiO Department of Informatics University of Oslo


Supporting literature in Norwegian (not syllabus)

Jim Tørresen: hva er KUNSTIG INTELLIGENS

Universitetsforlaget Nov 2013, ISBN: 9788215020211

Topics:

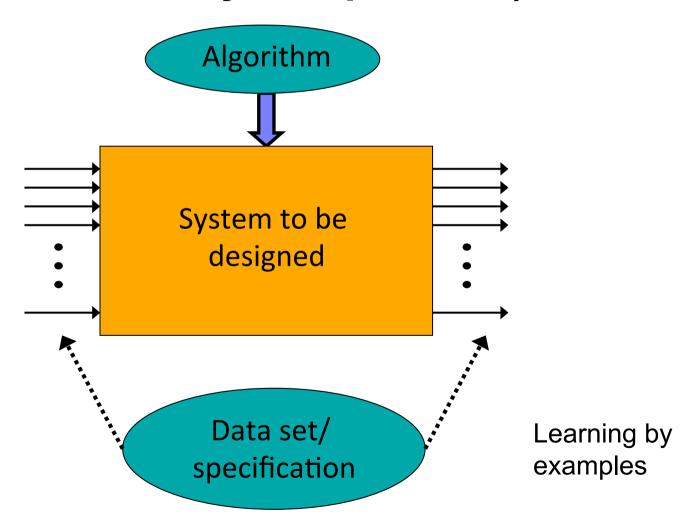
- Kunstig intelligens og intelligente systemer
- Problemløsning med kunstig intelligens
- Evolusjon, utvikling og læring
- Sansing og oppfatning
- Bevegelse og robotikk
- Hvor intelligente kan og bør maskiner bli?

UiO Department of Informatics University of Oslo

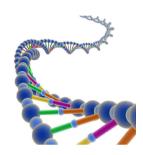
Lecture Plan Autumn 2015

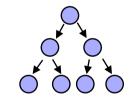
Date	Topic	Syllabus	
24.08.2015	Intro to the course. Optimization and search.	Marsland (chapter 9.1, 9.4-9.6)	
31.08.2015	Evolutionary algorithms I: Introduction and representation.	Eiben & Smith (chapter 1-4, old book: 1-3)	
07.09.2015	Evolutionary algorithms II: Population management and popular algorithms	Eiben & Smith (chapter 5-6, old book: 3-6) (+ Marsland 10.1-10.4)	
14.09.2015	Evolutionary algorithms III: Multi-objective optimization. Hybrid algorithms. Working with evolutionary algorithms.	Eiben & Smith (chapter 9, 10, 12 (old book: 9, 10, 14)	
21.09.2015	Intro to machine learning and classification. Single-layer neural networks.	Marsland (chapter 1 and 3)	
28.09.2015	Break (no lecture)		
05.10.2015	Multi-layer neural networks. Backpropagation and practical issues	Marsland (chapter 4)	
12.10.2015	Swarm Intelligence. Evolvable hardware.	TBA (On-line papers on the course web page)	
19.10.2015	Support vector machines. Ensemble learning. Dimensionality reduction.	Marsland (chapter 8, 13, 6.2.)	
26.10.2015	Unsupervised learning. K-means. Self-organizing maps.	Marsland (chapter 14)	
02.11.2015	Reinforcement learning	Marsland (chapter 11)	
09.11.2015	Bioinspired computing for robots and music. Future perspectives on Artificial Intelligence.	On-line papers on the course web page	
16.11.2015	Summary. Questions	9	

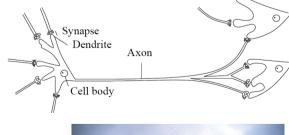
What is the course about?


- Artificial Intelligence/machine learning
- Self-learning and adaptive systems
- Systems that can sense, reason (think) and/or respond
- Why bio-inspired?
- Increase intelligence in both single node and multiple node systems

Self learning/Machine learning (ex: evolutionary computation)


Man/Woman vs Machine – Who are smartest?


- Machines are good at:
 - number crunching
 - storing data and searching in data
 - specific tasks (e.g. control systems in manufacturing)
- Humans are good at:
 - sensing (see, hear, smell etc and be able to recognize what we senses)
 - general thinking/reasoning
 - motion control (speaking, walking etc).



Major Mechanisms in Nature

- **Evolution:** Biological systems develop and change during generations.
- Development/growth: By cell division a multi-cellular organism is developed.
- Learning: Individuals undergo learning through their lifetime.
- Collective behavior: Immune systems, flocks of birds, fishes etc
- Sensing and motion

