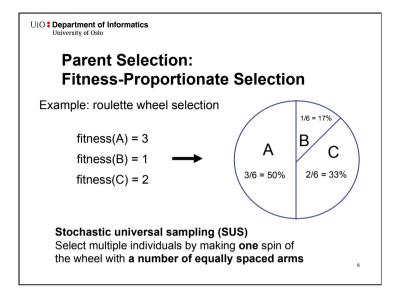
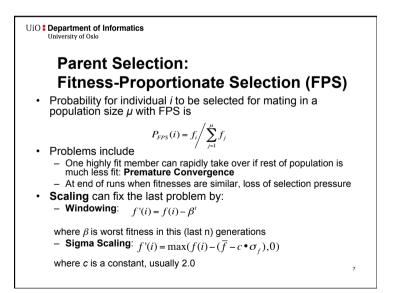


UiO **Compartment of Informatics**

Population Management Models: Fitness based competition

- Selection can occur in two places:
 - Selection from current generation to take part in mating (parent selection)
 - Selection from parents + offspring to go into next generation (survivor selection)
- · Selection operators work on whole individual
 - i.e. they are representation-independent !
- Selection pressure: As selection pressure increases, fitter solutions are more likely to survive, or be chosen as parents

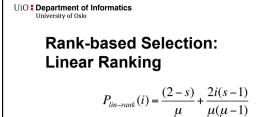




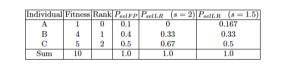
UiO **Department of Informatics**

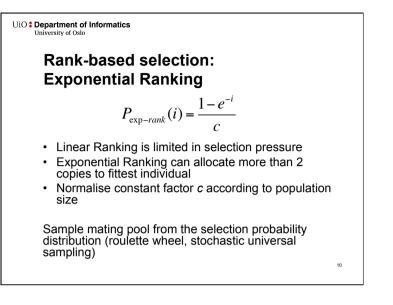
Parent Selection: Rank-based Selection

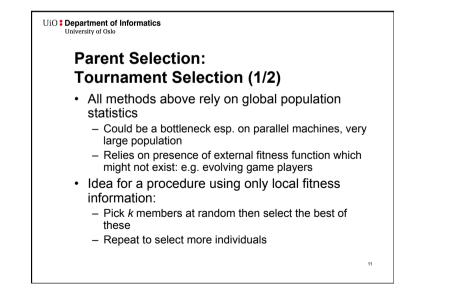
- Attempt to remove problems of FPS by basing selection probabilities on *relative* rather than *absolute* fitness
- Rank population according to fitness and then base selection probabilities on rank (fittest has rank μ-1 and worst rank 0)
- This imposes a sorting overhead on the algorithm, but this is usually negligible compared to the fitness evaluation time



- Parameterised by factor s: 1 < s ≤ 2
 measures advantage of best individual
- Simple 3 member example







UiO **Compartment of Informatics**

Parent Selection: Tournament Selection (2/2)

- Probability of selecting *i* will depend on:
 - Rank of *i*
 - Size of sample k
 - higher k increases selection pressure
 - Whether contestants are picked with replacement
 - Picking without replacement increases selection pressure
 - Whether fittest contestant always wins (deterministic) or this happens with probability p

UiO : Department of Informatics UiO : Department of Informatics University of Oslo University of Oslo **Parent Selection:** Survivor Selection Uniform Managing the process of reducing the working memory of the EA from a set of u parents and λ $P_{uniform}(i) = \frac{1}{-}$ offspring to a set of u individuals forming the next generation · Parents are selected by uniform random Survivor selection can be divided into two distribution whenever an operator needs one/ approaches: some - Age-Based Selection • Uniform parent selection is unbiased - every · Fitness is not taken into account individual has the same probability to be In SS-GA can implement as "deleteselected random" (not recommended) or as first-infirst-out (a.k.a. delete-oldest)

13

15

Fitness-based replacement (1/2) Elitism Always keep at least one copy of the fittest solution so far Widely used in both population models (GGA, SSGA) GENITOR: a.k.a. "delete-worst" Rapid takeover: use with large populations or "no duplicates" policy

Round-robin tournament (from EP)

- P(t): μ parents, P'(t): μ offspring

- Pairwise competitions in round-robin format:
 Each solution x from P(t) U P'(t) is evaluated aga
 - Each solution x from P(t) ∪ P'(t) is evaluated against q other randomly chosen solutions
 For each comparison, a "win" is assigned if x is better than its
 - opponent • The μ solutions with the greatest number of wins are retained to be parents of the next generation
- Parameter q allows tuning selection pressure
- Typically q = 10

UiO : Department of Informatics

University of Oslo

UiO **Department of Informatics**

Fitness-based replacement (2/2) (from ES)

- Fitness-Based Replacement

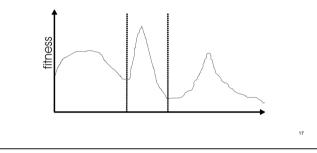
- (μ,λ)-selection (best candidates can be lost)
 - based on the set of **children only** ($\lambda > \mu$)
 - choose the **best** μ offspring for next generation
- (μ+λ)-selection (elitist strategy)
 - based on the set of parents and children
 - choose the **best** μ offspring for next generation
- Often (μ, λ) -selection is preferred for:
 - Better in leaving local optima
- $\lambda \approx 7 \cdot \mu$ is a traditionally good setting (decreasing over the last couple of years, $\lambda \approx 3 \cdot \mu$ seems more popular lately)

20

UiO **Contemportation** Department of Informatics University of Oslo

Multimodality

Most interesting problems have more than one locally optimal solution.



UiO : Department of Informatics University of Oslo

Multimodality: Genetic Drift

- Finite population with global mixing and selection eventually convergence around one optimum
- Why?
- Often might want to identify several possible peaks
- Sub-optimum can be more attractive

UiO : Department of Informatics

Approaches for Preserving Diversity: Introduction (1/2)

- · Explicit vs implicit
- Implicit approaches:
 - Impose an equivalent of geographical separation
 - Impose an equivalent of speciation
- Explicit approaches
 - Make similar individuals compete for resources (fitness)
 - Make similar individuals compete with each other for survival

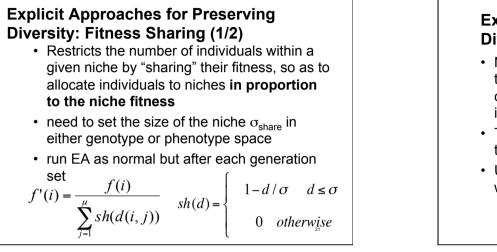
19

UiO : Department of Informatics

Approaches for Preserving Diversity: Introduction (1/2)

Different spaces:

- Genotype space
 - Set of representable solutions
- Phenotype space
 - The end result
 - Neighbourhood structure may bear little relation with genotype space
- Algorithmic space
 - Equivalent of the geographical space on which life on earth has evolved
 - · Structuring the population into a number of sub-populations

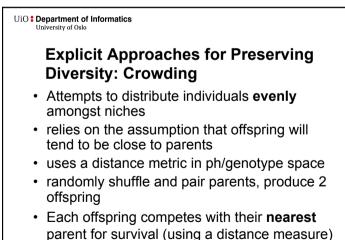


23

UiO : Department of Informatics

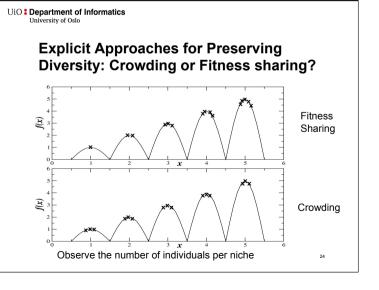
Explicit Approaches for Preserving Diversity: Fitness Sharing (2/2)

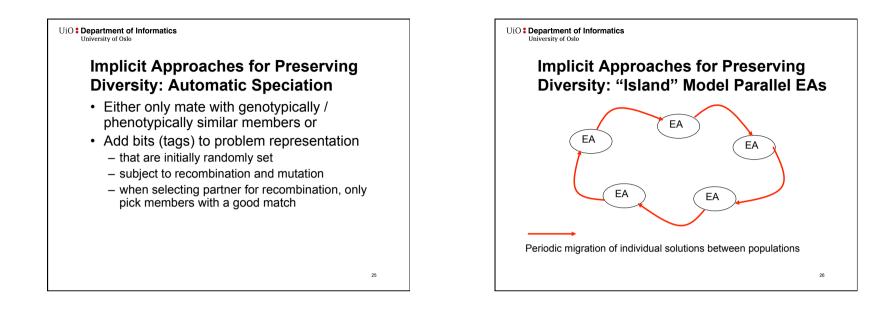
- Note: if we used sh(d) = 1 for d < σ_{share} then the sum that reduces the fitness would simply count the number of neighbours, i.e., individuals closer than σ_{share}
- This creates an advantage of being alone in the neighbourhood
- Using 1 d/ σ_{share} instead of 1 implies that we count distant neighbours less

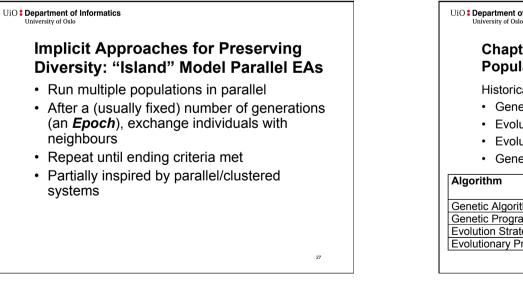


UiO : Department of Informatics

University of Oslo







UiO S Department of Informatics

Chapter 6: **Popular Evolutionary Algorithm Variants**

Historical EA variants:

- Genetic Algorithms
- · Evolution Strategies
- Evolutionary Programming
- Genetic Programming

Chromosome	Crossover	Mutation
Representation		
Array	Х	Х
Tree	Х	Х
Array	(X)	Х
No constraints	-	Х
		28
	Representation Array Tree Array	RepresentationArrayXTreeX

32

UiO **Department of Informatics** University of Oslo

Genetic Algorithms: Overview Simple GA

- Developed: USA in the 1960's
- Early names: J. Holland, K. DeJong, D. Goldberg
- Typically applied to:
 - discrete function optimization
 - benchmark for comparison with other algorithms

29

31

- straightforward problems binary representation
- Features:
 - not too fast
 - missing new variants (elitsm, sus)
 - often modelled by theorists

UiO : Department of Informatics

Genetic Algorithms: Simple GA (SGA) summary

Representation	Bit-strings
Recombination	1-Point crossover
Mutation	Bit flip
Parent selection	Fitness proportional – implemented by Roulette Wheel
Survivor selection	Generational

UiO : Department of Informatics

Genetic Algorithms: SGA reproduction cycle

- Select parents for the mating pool (size of mating pool = population size)
- Shuffle the mating pool
- **Apply crossover** for each consecutive pair with probability p_c, otherwise copy parents
- Apply mutation for each offspring (bit-flip with probability p_m independently for each bit)
- Replace the whole population with the resulting offspring

UiO : Department of Informatics

Genetic Algorithms: An example after Goldberg '89

- Simple problem: max x² over {0,1,...,31}
- GA approach:
 - Representation: binary code, e.g., 01101 ↔ 13
 - Population size: 4
 - 1-point x-over, bitwise mutation
 - Roulette wheel selection
 - Random initialisation
- We show one generational cycle done by hand

UiO **Contemporation** UiO **Contemporation** University of Oslo

X² example: Selection

	Initial	x Value			$Prob_i$	Expected	Actual
no. p	population		f	$f(x) = x^2$		count	count
1	$0\ 1\ 1\ 0\ 1$	13		169	0.14	0.58	1
2	$1\ 1\ 0\ 0\ 0$	24		576	0.49	1.97	2
3	$0\ 1\ 0\ 0\ 0$	8		64	0.06	0.22	0
4	$1 \ 0 \ 0 \ 1 \ 1$	19		361	0.31	1.23	1
Sum				1170	1.00	4.00	4
Average				293	0.25	1.00	1
Max				576	0.49	1.97	2

epartment of niversity of Oslo	Informatics			
X ² exa	ample: N	lutation		
String	Offspring	Offspring	x Value	Fitnes
no.		after mutation	a value	f(x) = x
1	01100	11100	26	676
2	11001	11001	25	625
2	$1 \ 1 \ 0 \ 1 \ 1$	11 <u>0</u> 11	27	729
4	10000	10100	18	324
Sum				2354
Average				588.5
Max				729

35

UiO **Contemport of Informatics** University of Oslo

X² example: Crossover

	Mating	Crossover	Offspring	x Value	Fitness
no.	pool	point	after xover		$f(x) = x^2$
1	$0\ 1\ 1\ 0\ \ 1$	4	$0\ 1\ 1\ 0\ 0$	12	144
2	110000	4	$1\ 1\ 0\ 0\ 1$	25	625
2	11 000	2	$1\ 1\ 0\ 1\ 1$	27	729
4	10011	2	$1 \ 0 \ 0 \ 0 \ 0$	16	256
Sum					1754
Average					439
Max					729

 Genetic Algorithms: The simple GA Has been subject of many (early) studies still often used as benchmark for novel GAs Shows many shortcomings, e.g., Representation is too restrictive Mutation & crossover operators only applicable for bit-string & integer representations Selection mechanism sensitive for converging populations with close fitness values Generational population model can be improved with orplicit sumiver soluction 	UiO S Department of Informatics University of Oslo
 still often used as benchmark for novel GAs Shows many shortcomings, e.g., Representation is too restrictive Mutation & crossover operators only applicable for bit-string & integer representations Selection mechanism sensitive for converging populations with close fitness values Generational population model can be improved 	•
	 still often used as benchmark for novel GAs Shows many shortcomings, e.g., Representation is too restrictive Mutation & crossover operators only applicable for bit-string & integer representations Selection mechanism sensitive for converging populations with close fitness values

Evolution Strategies: Quick overview

- · Developed: Germany in the 1960's
- Early names: I. Rechenberg, H.-P. Schwefel
- Typically applied to:
- numerical optimisation
- · Attributed features:

fast

- good optimizer for real-valued optimisation
- relatively much theory

Special:

- self-adaptation of (mutation) parameters standard

37

39

UiO **Department of Informatics**

Evolution Strategies: Example (1+1) ES

- Task: minimimise $f : \mathbb{R}^n \rightarrow \mathbb{R}$
- Algorithm: "two-membered ES" using
 - Vectors from Rⁿ directly as chromosomes
 - Population size 1
 - Only mutation creating one child
 - Greedy selection

UiO : Department of Informatics

UiO : Department of Informatics

Representation

Recombination

Parent selection

Survivor selection

Mutation

ES summary

Evolution Strategies:

Real-valued vectors

Discrete or intermediary

38

40

Gaussian perturbation

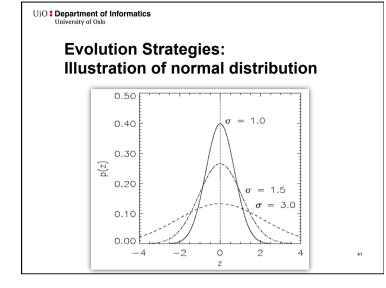
Uniform random

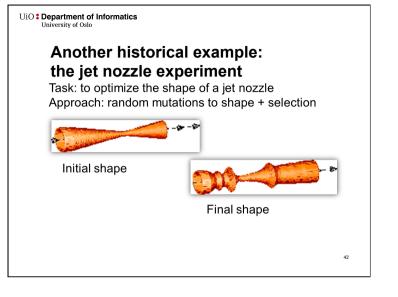
 (μ,λ) or $(\mu+\lambda)$

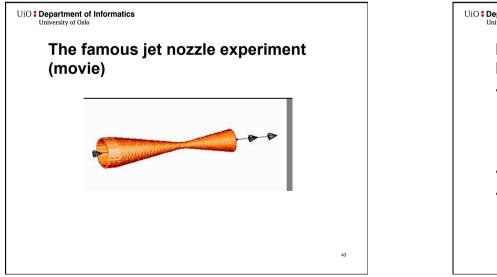
University of Oslo

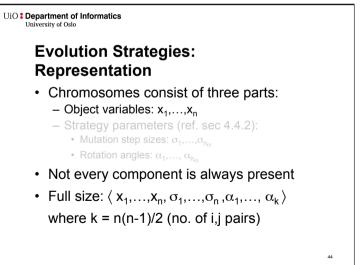
Evolution Strategies: Introductory example: mutation mechanism

- z values drawn from normal distribution N(ξ,σ)
 - mean ξ is set to 0
 - variation σ is called mutation step size
- σ is varied on the fly by the "1/5 success rule":
- This rule resets $\boldsymbol{\sigma}$ after every k iterations by
 - σ = σ / c if p_s > 1/5
 - $-\sigma = \sigma \cdot c$ if $p_s < 1/5$
 - $-\sigma = \sigma$ if $p_s = 1/5$
- where p_s is the % of successful mutations, $0.8 \le c \le 1$









UiO **Contemportation** Department of Informatics University of Oslo

Evolution Strategies: Recombination

- · Creates one child
- · Acts per variable / position by either
 - Averaging parental values, or
 - Selecting one of the parental values
- From two or more parents by either:
 - Using two selected parents to make a child

45

47

- Selecting two parents for each position

UiO : Department of Informatics University of Oslo

Evolution Strategies: Names of recombinations

	Two fixed parents	Two parents selected for each i
$z_i = (x_i + y_i)/2$	Local intermediary	Global intermediary
z _i is x _i or y _i chosen randomly	Local discrete	Global discrete

UiO **Department of Informatics**

Evolution Strategies: Parent selection

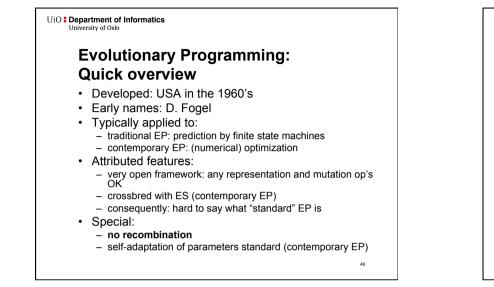
- Parents are selected by uniform random distribution whenever an operator needs one/ some
- Thus: ES parent selection is unbiased every individual has the same probability to be selected

UiO **Contemporation** UiO **Contemporation** University of Oslo

Evolution Strategies: Prerequisites for self-adaptation

- μ > 1 to carry different strategies
- $\lambda > \mu$ to generate offspring surplus
- (μ, λ) -selection to get rid of misadapted σ 's
- Mixing strategy parameters by (intermediary) recombination on them

52



UiO : Department of Informatics University of Oslo

Evolutionary Programming: Technical summary tableau

Representation	Real-valued vectors
Recombination	None
Mutation	Gaussian perturbation
Parent selection	Deterministic (each parent one offspring)
Survivor selection	Probabilistic (µ+µ)

UIO: Department of Informatics University of Oslo Evolutionary Programming: Historical EP perspective • EP aimed at achieving intelligence

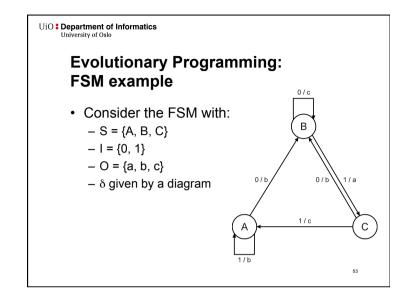
- Intelligence was viewed as adaptive behaviour
- Prediction of the environment was considered a prerequisite to adaptive behaviour
- Thus: capability to predict is key to intelligence

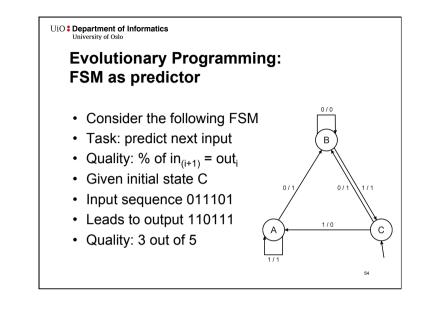
51

UiO : Department of Informatics

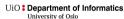
Evolutionary Programming: Prediction by finite state machines

- Finite state machine (FSM):
 - States S
 - Inputs I
 - Outputs O
 - Transition function δ : S x I \rightarrow S x O
 - Transforms input stream into output stream
- Can be used for predictions, e.g. to predict next input symbol in a sequence



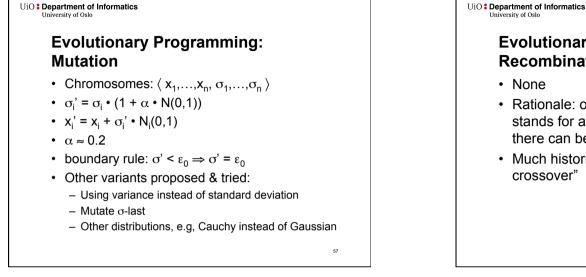


- Thus: no predefined mutation (must match representation)
- Often applies self-adaptation of mutation parameters



Evolutionary Programming: Representation

- For continuous parameter optimisation
- Chromosomes consist of two parts:
 - Object variables: x₁,...,x_n
 - Mutation step sizes: $\sigma_1, \ldots, \sigma_n$
- Full size: $\langle x_1, ..., x_n, \sigma_1, ..., \sigma_n \rangle$



University of Oslo Evolutionary Programming: Recombination • None

- Rationale: one point in the search space stands for a species, not for an individual and there can be no crossover between species
- Much historical debate "mutation vs. crossover"

UiO **Contemporation** Department of Informatics University of Oslo

Evolutionary Programming: Parent selection

· Each individual creates one child by mutation

50

- Thus:
 - Deterministic
 - Not biased by fitness

UiO **Content of Informatics**

Evolutionary Programming: Evolving checkers player (Fogel'02) (1/2)

- Neural nets for evaluating future values of moves are evolved
- NNs have fixed structure with 5046 weights, these are evolved + one weight for "kings"
- Representation:
 - vector of 5046 real numbers for object variables (weights)
 - vector of 5046 real numbers for σ 's 🧃
- Population size 15

UiO **Contemportation** Department of Informatics University of Oslo

Evolutionary Programming: Evolving checkers player (Fogel'02) (2/2)

- Tournament size q = 5
- Programs (with NN inside) play against other programs, no human trainer or hard-wired intelligence
- After 840 generation (6 months!) best strategy was tested against humans via Internet
- Program earned "expert class" ranking outperforming 99.61% of all rated players

61

UiO: Department of Informatics University of Oslo Genetic Programming: Quick overview • Developed: USA in the 1990's • Early names: J. Koza • Typically applied to: - machine learning tasks (prediction, classification...) • Attributed features: - competes with neural nets and alike - needs huge populations (thousands) - slow • Special: - non-linear chromosomes: trees, graphs - mutation possible but not necessary

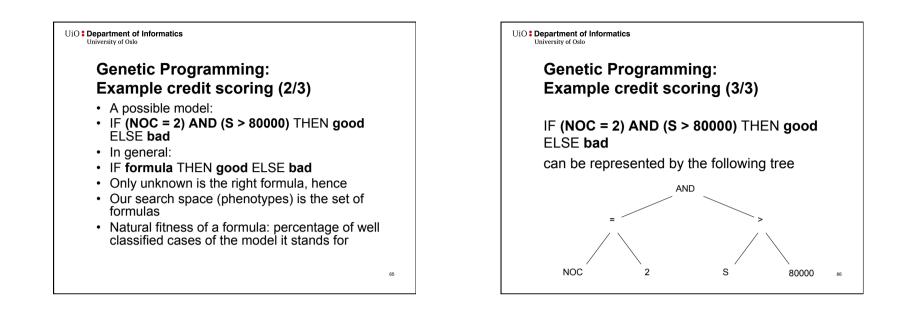
<text>

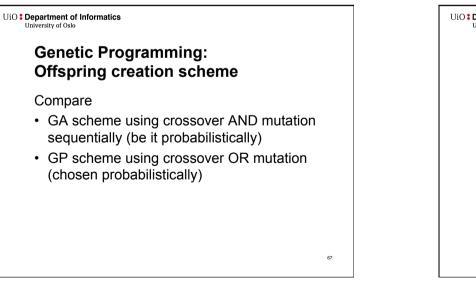
UiO : Department of Informatics

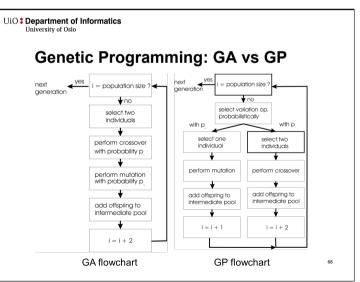
Genetic Programming: Example credit scoring (1/3)

- Bank wants to distinguish good from bad loan applicants
- · Model needed that matches historical data

ID	No of children	Salary	Marital status	OK?
ID-1	2	45000	Married	0
ID-2	0	30000	Single	1
ID-3	1	40000	Divorced	1
				6







72

UiO Separtment of Informatics University of Oslo

Genetic Programming: Selection

- · Parent selection typically fitness proportionate
- Over-selection in very large populations
 - rank population by fitness and divide it into two groups:
 - group 1: best x% of population, group 2 other (100-x)%
 - 80% of selection operations chooses from group 1, 20% from group 2
 - for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%
 - motivation: to increase efficiency, %'s come from rule of thumb

69

71

- Survivor selection:
 - Typical: generational scheme (thus none)
 - Recently steady-state is becoming popular for its elitism

UiO : Department of Informatics

Genetic Programming: Initialisation

- Maximum initial depth of trees D_{max} is set
- Full method (each branch has depth = D_{max}):
 nodes at depth d < D_{max} randomly chosen from
 - nodes at depth d < D_{max} randomly chosen from function set F
 - nodes at depth d = D_{max} randomly chosen from terminal set T
- Grow method (each branch has depth ≤ D_{max}):
 nodes at depth d < D_{max} randomly chosen from F ∪ T
 - nodes at depth d = D_{max} randomly chosen from T
- Common GP initialisation: ramped half-and-half, where grow & full method each deliver half of initial population

UiO : Department of Informatics

Genetic Programming: Bloat

- Bloat = "survival of the fattest", i.e., the tree sizes in the population are increasing over time
- Ongoing research and debate about the reasons
- Needs countermeasures, e.g.
 - Prohibiting variation operators that would deliver "too big" children
 - Parsimony pressure: penalty for being oversized

UiO : Department of Informatics

University of Oslo

Summary: The standard EA variants

Name	Representation	Crossover	Mutation	Parent selection	Survivor selection	Specialty
Genetic Algorithm	Usually fixed-length vector	Any or none	Any	Any	Any	None
Evolution Strategies	Real-valued vector	Discrete or intermediate recombination	Gaussian	Random draw	Best N	Strategy parameters
Evolutionary Programming	Real-valued vector	None	Gaussian	One child each	Tournament	Strategy parameters
Genetic Programming	Tree	Swap sub-tree	Replace sub-tree	Usually fitness proportional	Generational replacement	None