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INF3490 - Biologically inspired computing 

Lecture 3: Eiben and Smith, chapter 5-6 
 

Evolutionary Algorithms -
Population management and 

popular algorithms 
Jim Tørresen 

Chapter 5: 
Fitness, Selection and Population Management 

•  Selection is second fundamental force for 
evolutionary systems 

•  Components exist of: 
-  Population management models 
-  Selection operators 
-  Preserving diversity  
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Scheme of an EA: 
General scheme of EAs 
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Population 

Parents 
Parent selection 

Survivor selection 
Offspring 

Recombination 
(crossover) 

Mutation 

Intialization 

Termination 

Population Management Models: 
Introduction 
•  Two different population management models 

exist: 
–  Generational model 

•  each individual survives for exactly one generation 
•  the entire set of parents is replaced by the offspring 

–  Steady-state model 
•  one offspring is generated per generation 
•  one member of population replaced 

•  Generation Gap  
–  The proportion of the population replaced 
–  Parameter = 1.0 for G-GA,  = 1/pop_size for SS-GA 
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Population Management Models: 
Fitness based competition 
•  Selection can occur in two places: 

–  Selection from current generation to take part in 
mating (parent selection)  

–  Selection from parents + offspring to go into next 
generation (survivor selection) 

•  Selection operators work on whole individual 
–  i.e. they are representation-independent ! 

•  Selection pressure: As selection pressure 
increases, fitter solutions are more likely to 
survive, or be chosen as parents 
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Example: roulette wheel selection 

fitness(A) = 3 

fitness(B) = 1 

fitness(C) = 2 

A C 

1/6 = 17% 

3/6 = 50% 

B 

2/6 = 33% 

Parent Selection: 
Fitness-Proportionate Selection 
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Stochastic universal sampling (SUS)  
Select multiple individuals by making one spin of 
the wheel with a number of equally spaced arms 

Parent Selection: 
Fitness-Proportionate Selection (FPS) 

•  Probability for individual i to be selected for mating in a 
population size µ with FPS is  

•  Problems include 
–  One highly fit member can rapidly take over if rest of population is 

much less fit: Premature Convergence 
–  At end of runs when fitnesses are similar, loss of selection pressure  

•  Scaling can fix the last problem by: 
–  Windowing:  
 
where β is worst fitness in this (last n) generations 
–  Sigma Scaling:  
 
where c is a constant, usually 2.0 
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PFPS (i) = fi f j
j=1

µ

∑

f '(i) = f (i)−β t

f '(i) =max( f (i)− ( f − c•σ f ), 0)

Parent Selection: 
Rank-based Selection 
•  Attempt to remove problems of FPS by 

basing selection probabilities on relative 
rather than absolute fitness 

•  Rank population according to fitness and 
then base selection probabilities on rank 
(fittest has rank µ-1 and worst rank 0) 

•  This imposes a sorting overhead on the 
algorithm, but this is usually negligible 
compared to the fitness evaluation time 
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Rank-based Selection: 
Linear Ranking 

•  Parameterised by factor s: 1 < s ≤ 2 
–  measures advantage of best individual 

•  Simple 3 member example 
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Plin−rank (i) =
(2− s)
µ

+
2i(s−1)
µ(µ −1)

Rank-based selection: 
Exponential Ranking 

•  Linear Ranking is limited in selection pressure 
•  Exponential Ranking can allocate more than 2 

copies to fittest individual 
•  Normalise constant factor c according to population 

size 

Sample mating pool from the selection probability 
distribution (roulette wheel, stochastic universal 
sampling) 
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Pexp−rank (i) =
1− e−i

c

Parent Selection: 
Tournament Selection (1/2) 
•  All methods above rely on global population 

statistics 
–  Could be a bottleneck esp. on parallel machines, very 

large population 
–  Relies on presence of external fitness function which 

might not exist: e.g. evolving game players 
•  Idea for a procedure using only local fitness 

information: 
–  Pick k members at random then select the best of 

these 
–  Repeat to select more individuals 
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Parent Selection: 
Tournament Selection (2/2) 

•  Probability of selecting i will depend on: 
– Rank of i 
– Size of sample k  

•   higher k increases selection pressure 

– Whether contestants are picked with 
replacement 

•  Picking without replacement increases selection pressure 

– Whether fittest contestant always wins 
(deterministic) or this happens with probability p 

12 
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Parent Selection: 
Uniform 

•  Parents are selected by uniform random 
distribution whenever an operator needs one/
some  

•  Uniform parent selection is unbiased - every 
individual has the same probability to be 
selected 
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Puniform (i) =
1
µ

Survivor Selection 
•  Managing the process of reducing the working 

memory of the EA from a set of µ parents and λ 
offspring to a set of µ individuals forming the 
next generation 

•  Survivor selection can be divided into two 
approaches: 
– Age-Based Selection 

•  Fitness is not taken into account 
•  In SS-GA can implement as “delete-

random” (not recommended) or as first-in-
first-out (a.k.a. delete-oldest)  

– Fitness-Based Replacement 14 

Fitness-based replacement (1/2) 
•  Elitism 

–  Always keep at least one copy of the fittest solution so far 
–  Widely used in both population models (GGA, SSGA) 

•  GENITOR: a.k.a. “delete-worst” 
–  Rapid takeover: use with large populations or “no duplicates” 

policy 
•  Round-robin tournament (from EP) 

–  P(t): µ parents, P’(t): µ offspring  
–  Pairwise competitions in round-robin format: 

•  Each solution x from P(t) ∪ P’(t) is evaluated against q other 
randomly chosen solutions  

•  For each comparison, a "win" is assigned if x is better than its 
opponent 

•  The µ solutions with the greatest number of wins are retained to be 
parents of the next generation 

–  Parameter q allows tuning selection pressure 
–  Typically q = 10 
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Fitness-based replacement (2/2) 
(from ES) 
•  (µ,λ)-selection (best candidates can be lost) 
-  based on the set of children only (λ > µ) 
-  choose the best µ offspring for next generation 

•  (µ+λ)-selection (elitist strategy) 
-  based on the set of parents and children 
-  choose the best µ offspring for next generation 

•  Often (µ,λ)-selection is preferred for: 
–  Better in leaving local optima  

•  λ ≈ 7 • µ is a traditionally good setting (decreasing over 
the last couple of years, λ ≈ 3 • µ seems more popular 
lately)  
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Multimodality 

Most interesting problems have more than one 
locally optimal solution. 
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Multimodality: 
Genetic Drift 
•  Finite population with global mixing and 

selection eventually convergence around one 
optimum 

•  Why? 
•  Often might want to identify several possible 

peaks 
•  Sub-optimum can be more attractive 
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Approaches for Preserving Diversity: 
Introduction (1/2) 
•  Explicit vs implicit 
•  Implicit approaches: 

–  Impose an equivalent of geographical separation 
–  Impose an equivalent of speciation 

•  Explicit approaches 
–  Make similar individuals compete for resources 

(fitness) 
–  Make similar individuals compete with each other 

for survival 
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Approaches for Preserving Diversity: 
Introduction (1/2) 
Different spaces: 

–  Genotype space 
•  Set of representable solutions 

–  Phenotype space 
•  The end result 
•  Neighbourhood structure may bear little relation with 

genotype space  
–  Algorithmic space 

•  Equivalent of the geographical space on which life on earth 
has evolved 

•  Structuring the population into a number of sub-populations 

20 
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Explicit Approaches for Preserving 
Diversity: Fitness Sharing (1/2) 

•  Restricts the number of individuals within a 
given niche by “sharing” their fitness, so as to 
allocate individuals to niches in proportion 
to the niche fitness 

•  need to set the size of the niche σshare in 
either genotype or phenotype space 

•  run EA as normal but after each generation 
set 

∑
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Explicit Approaches for Preserving 
Diversity: Fitness Sharing (2/2) 
•  Note: if we used sh(d) = 1 for d < σshare then 

the sum that reduces the fitness would simply 
count the number of neighbours, i.e., 
individuals closer than σshare 

•  This creates an advantage of being alone in 
the neighbourhood  

•  Using 1 – d/ σshare instead of 1 implies that 
we count distant neighbours less  
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Explicit Approaches for Preserving 
Diversity: Crowding 

•  Attempts to distribute individuals evenly 
amongst niches 

•  relies on the assumption that offspring will 
tend to be close to parents 

•  uses a distance metric in ph/genotype space 
•  randomly shuffle and pair parents, produce 2 

offspring 
•  Each offspring competes with their nearest 

parent for survival (using a distance measure)  
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Explicit Approaches for Preserving 
Diversity: Crowding or Fitness sharing? 

Observe the number of individuals per niche 24 

Fitness 
Sharing 

Crowding 
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Implicit Approaches for Preserving 
Diversity: Automatic Speciation 
•  Either only mate with genotypically / 

phenotypically similar members or  
•  Add bits (tags) to problem representation  

–  that are initially randomly set  
–  subject to recombination and mutation 
–  when selecting partner for recombination, only 

pick members with a good match 
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Implicit Approaches for Preserving 
Diversity: “Island” Model Parallel EAs  

Periodic migration of individual solutions between populations 

EA 
EA 

EA EA 

EA 
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Implicit Approaches for Preserving 
Diversity: “Island” Model Parallel EAs  
•  Run multiple populations in parallel  
•  After a (usually fixed) number of generations 

(an Epoch), exchange individuals with 
neighbours 

•  Repeat until ending criteria met 
•  Partially inspired by parallel/clustered 

systems 
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Chapter 6: 
Popular Evolutionary Algorithm Variants 
Historical EA variants: 
•  Genetic Algorithms 
•  Evolution Strategies 
•  Evolutionary Programming 
•  Genetic Programming 
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Algorithm Chromosome 
Representation  

Crossover Mutation 

Genetic Algorithm (GA) Array X X 
Genetic Programming (GP)  Tree X X 
Evolution Strategies (ES) Array (X) X 
Evolutionary Programming (EP) No constraints - X 
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Genetic Algorithms: 
Overview Simple GA 
•  Developed: USA in the 1960’s 
•  Early names: J. Holland, K. DeJong, D. 

Goldberg 
•  Typically applied to: 

–   discrete function optimization 
–   benchmark for comparison with other algorithms 
–   straightforward problems binary representation 

•  Features: 
–  not too fast 
–  missing new variants (elitsm, sus) 
–  often modelled by theorists  
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Genetic Algorithms: 
Simple GA (SGA) summary 

Representation Bit-strings 
Recombination 1-Point crossover 
Mutation Bit flip 
Parent selection Fitness proportional – implemented 

by Roulette Wheel 
Survivor selection Generational 

30 

Genetic Algorithms: 
SGA reproduction cycle 
•  Select parents for the mating pool  

 (size of mating pool = population size) 
•  Shuffle the mating pool 
•  Apply crossover for each consecutive pair 

with probability pc, otherwise copy parents 
•  Apply mutation for each offspring (bit-flip 

with probability pm independently for each bit) 
•  Replace the whole population with the 

resulting offspring 
31 

Genetic Algorithms: 
An example after Goldberg ’89  
•  Simple problem: max x2 over {0,1,…,31} 
•  GA approach: 

–  Representation: binary code, e.g., 01101 ↔ 13 
–  Population size: 4 
–  1-point x-over, bitwise mutation  
–  Roulette wheel selection 
–  Random initialisation 

•  We show one generational cycle done by 
hand  

32 
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X2 example: Selection 

33 

X2 example: Crossover 

34 

X2 example: Mutation 

35 

Genetic Algorithms: 
The simple GA 
•  Has been subject of many (early) studies 

–  still often used as benchmark for novel GAs 
•  Shows many shortcomings, e.g., 

–  Representation is too restrictive 
–  Mutation & crossover operators only applicable 

for bit-string & integer representations 
–  Selection mechanism sensitive for converging 

populations with close fitness values 
–  Generational population model can be improved 

with explicit survivor selection 

36 
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Evolution Strategies: 
Quick overview 
•  Developed: Germany in the 1960’s 
•  Early names: I. Rechenberg, H.-P. Schwefel 
•  Typically applied to: 

–  numerical optimisation 
•  Attributed features: 

–  fast 
–  good optimizer for real-valued optimisation 
–  relatively much theory 

•  Special: 
–  self-adaptation of (mutation) parameters standard 

37 

Evolution Strategies: 
ES summary 

Representation Real-valued vectors 

Recombination Discrete or intermediary 

Mutation Gaussian perturbation 

Parent selection Uniform random 

Survivor selection (µ,λ) or (µ+λ) 
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Evolution Strategies: 
Example (1+1) ES 

•  Task: minimimise f : Rn à R 
•  Algorithm: “two-membered ES” using  

–  Vectors from Rn directly as chromosomes 
–  Population size 1 
–  Only mutation creating one child 
–  Greedy selection  
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Evolution Strategies: 
Introductory example: mutation 
mechanism 

•  z values drawn from normal distribution N(ξ,σ)  
–  mean ξ is set to 0  
–  variation σ is called mutation step size 

•  σ is varied on the fly by the “1/5 success rule”: 
•  This rule resets σ after every k iterations by 

–  σ = σ / c  if ps > 1/5 
–  σ = σ • c  if ps < 1/5 
–  σ = σ  if ps = 1/5 

•   where ps is the % of successful mutations, 0.8 ≤ c ≤ 1 

40 
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Evolution Strategies: 
Illustration of normal distribution 

41 

Another historical example: 
the jet nozzle experiment 

42 

The famous jet nozzle experiment 
(movie) 

43 

Evolution Strategies: 
Representation 
•  Chromosomes consist of three parts: 

–  Object variables: x1,…,xn 
–  Strategy parameters (ref. sec 4.4.2): 

•  Mutation step sizes: σ1,…,σnσ 

•  Rotation angles: α1,…, αnα 

•  Not every component is always present 
•  Full size: 〈 x1,…,xn, σ1,…,σn ,α1,…, αk 〉  

 where k = n(n-1)/2 (no. of i,j pairs) 

44 
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Evolution Strategies: 
Recombination 
•  Creates one child 
•  Acts per variable / position by either 

–  Averaging parental values, or 
–  Selecting one of the parental values 

•  From two or more parents by either: 
–  Using two selected parents to make a child 
–  Selecting two parents for each position 

45 

Evolution Strategies: 
Names of recombinations  

Two fixed 
parents 

Two parents 
selected for 
each i 

zi = (xi + yi)/2  Local 
intermediary 

Global 
intermediary 

zi is xi or yi 
chosen 
randomly  

Local discrete Global discrete 
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Evolution Strategies: 
Parent selection 

•  Parents are selected by uniform random 
distribution whenever an operator needs one/
some  

•  Thus: ES parent selection is unbiased - every 
individual has the same probability to be 
selected 

47 

Evolution Strategies: 
Prerequisites for self-adaptation  
•  µ > 1 to carry different strategies 
•  λ > µ to generate offspring surplus  
•  (µ,λ)-selection to get rid of misadapted σ‘s 
•  Mixing strategy parameters by (intermediary) 

recombination on them 

48 
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Evolutionary Programming: 
Quick overview 
•  Developed: USA in the 1960’s 
•  Early names: D. Fogel 
•  Typically applied to: 

–  traditional EP: prediction by finite state machines 
–  contemporary EP: (numerical) optimization  

•  Attributed features: 
–  very open framework: any representation and mutation op’s 

OK 
–  crossbred with ES (contemporary EP) 
–  consequently: hard to say what “standard” EP is 

•  Special: 
–  no recombination 
–  self-adaptation of parameters standard (contemporary EP) 
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Evolutionary Programming: 
Technical summary tableau 

Representation Real-valued vectors 
Recombination None 
Mutation Gaussian perturbation 
Parent selection Deterministic (each parent one 

offspring) 
Survivor selection Probabilistic (µ+µ) 
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Evolutionary Programming: 
Historical EP perspective 

•  EP aimed at achieving intelligence 
•  Intelligence was viewed as adaptive 

behaviour 
•  Prediction of the environment was 

considered a prerequisite to adaptive 
behaviour  

•  Thus: capability to predict is key to 
intelligence 
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Evolutionary Programming: 
Prediction by finite state machines 
•  Finite state machine (FSM):  

–  States S 
–  Inputs I 
–  Outputs O  
–  Transition function δ : S x I → S x O 
–  Transforms input stream into output stream 

•  Can be used for predictions, e.g. to predict 
next input symbol in a sequence 

52 
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Evolutionary Programming: 
FSM example 

•  Consider the FSM with:  
–  S = {A, B, C} 
–  I = {0, 1} 
–  O = {a, b, c} 
–  δ given by a diagram  

53 

Evolutionary Programming: 
FSM as predictor 

•  Consider the following FSM 
•  Task: predict next input 
•  Quality: % of in(i+1) = outi  
•  Given initial state C 
•  Input sequence 011101 
•  Leads to output 110111 
•  Quality: 3 out of 5 
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Evolutionary Programming: 
Modern EP 

•  No predefined representation in general 
•  Thus: no predefined mutation (must match 

representation) 
•  Often applies self-adaptation of mutation 

parameters 
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Evolutionary Programming: 
Representation   

•  For continuous parameter optimisation 
•  Chromosomes consist of two parts: 

–  Object variables: x1,…,xn 
–  Mutation step sizes: σ1,…,σn 

•  Full size: 〈 x1,…,xn, σ1,…,σn 〉  

56 
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Evolutionary Programming: 
Mutation 
•  Chromosomes: 〈 x1,…,xn, σ1,…,σn 〉  
•  σi’ = σi • (1 + α • N(0,1)) 
•  xi’ = xi + σi’ • Ni(0,1) 
•  α ≈ 0.2 
•  boundary rule: σ’ < ε0 ⇒ σ’ = ε0  
•  Other variants proposed & tried: 

–  Using variance instead of standard deviation 
–  Mutate σ-last 
–  Other distributions, e.g, Cauchy instead of Gaussian 
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Evolutionary Programming: 
Recombination  
•  None 
•  Rationale: one point in the search space 

stands for a species, not for an individual and 
there can be no crossover between species 

•  Much historical debate “mutation vs. 
crossover” 
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Evolutionary Programming: 
Parent selection 
•  Each individual creates one child by mutation 
•  Thus:  

–  Deterministic 
–  Not biased by fitness 
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Evolutionary Programming: 
Evolving checkers player (Fogel’02) (1/2) 

•  Neural nets for evaluating future values 
of moves are evolved 

•  NNs have fixed structure with 5046 
weights, these are evolved + one weight 
for “kings” 

•  Representation:  
–  vector of 5046 real numbers for object 

variables (weights) 
–  vector of 5046 real numbers for σ‘s 

•  Population size 15 
60 
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Evolutionary Programming: 
Evolving checkers player (Fogel’02) (2/2) 
•  Tournament size q = 5 
•  Programs (with NN inside) play against other 

programs, no human trainer or hard-wired 
intelligence 

•  After 840 generation (6 months!) best 
strategy was tested against humans via 
Internet 

•  Program earned “expert class” ranking 
outperforming 99.61% of all rated players  
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Genetic Programming: 
Quick overview 
•  Developed: USA in the 1990’s 
•  Early names: J. Koza 
•  Typically applied to: 

–  machine learning tasks (prediction, classification…) 
•  Attributed features: 

–  competes with neural nets and alike 
–  needs huge populations (thousands) 
–  slow 

•  Special: 
–  non-linear chromosomes: trees, graphs 
–  mutation possible but not necessary  
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Genetic Programming: 
Summary 

Representation Tree structures 
Recombination Exchange of subtrees 
Mutation Random change in trees 
Parent selection Fitness proportional 
Survivor selection Generational replacement 
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Genetic Programming: 
Example credit scoring (1/3) 
•  Bank wants to distinguish good from bad 

loan applicants 
•  Model needed that matches historical data 

64 

ID No of 
children 

Salary Marital status OK? 

ID-1 2 45000 Married 0 
ID-2 0 30000 Single 1 
ID-3 1 40000 Divorced  1 
… 
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Genetic Programming: 
Example credit scoring (2/3) 
•  A possible model:  
•  IF (NOC = 2) AND (S > 80000) THEN good 

ELSE bad 
•  In general:  
•  IF formula THEN good ELSE bad 
•  Only unknown is the right formula, hence 
•  Our search space (phenotypes) is the set of 

formulas 
•  Natural fitness of a formula: percentage of well 

classified cases of the model it stands for 
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Genetic Programming: 
Example credit scoring (3/3) 
 
IF (NOC = 2) AND (S > 80000) THEN good 
ELSE bad 
can be represented by the following tree 
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AND 

S 2 NOC 80000 

> = 

Genetic Programming: 
Offspring creation scheme 

Compare  
•  GA scheme using crossover AND mutation 

sequentially (be it probabilistically) 
•  GP scheme using crossover OR mutation 

(chosen probabilistically) 

67 

Genetic Programming: GA vs GP 

68 
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Genetic Programming: Selection  

•  Parent selection typically fitness proportionate 
•  Over-selection in very large populations 

–  rank population by fitness and divide it into two groups:  
–  group 1: best x% of population, group 2 other (100-x)% 
–  80% of selection operations chooses from group 1, 20% from 

group 2 
–  for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4% 
–  motivation: to increase efficiency, %’s come from rule of thumb  

•  Survivor selection:  
–  Typical: generational scheme (thus none) 
–  Recently steady-state is becoming popular for its 

elitism 69 

Genetic Programming: 
Initialisation 
•  Maximum initial depth of trees Dmax is set 
•  Full method (each branch has depth = Dmax): 

–  nodes at depth d < Dmax randomly chosen from 
function set F 

–  nodes at depth d = Dmax randomly chosen from 
terminal set T 

•  Grow method (each branch has depth ≤ Dmax): 
–  nodes at depth d < Dmax randomly chosen from F ∪ T 
–  nodes at depth d = Dmax randomly chosen from T 

•  Common GP initialisation: ramped half-and-half, 
where grow & full method each deliver half of 
initial population  
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Genetic Programming: 
Bloat 
•  Bloat = “survival of the fattest”, i.e., the tree 

sizes in the population are increasing over 
time 

•  Ongoing research and debate about the 
reasons  

•  Needs countermeasures, e.g. 
–  Prohibiting variation operators that would deliver 

“too big” children 
–  Parsimony pressure: penalty for being oversized 
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Summary: The standard EA variants 

Name Representation Crossover Mutation Parent 
selection 

Survivor 
selection 

Specialty 

Genetic 
Algorithm Usually fixed-length 

vector Any or none Any Any Any None 

Evolution 
Strategies Real-valued vector 

Discrete or 
intermediate 

recombination 
Gaussian Random draw Best N Strategy 

parameters 

Evolutionary 
Programming Real-valued vector None Gaussian One child each Tournament Strategy 

parameters 

Genetic 
Programming Tree Swap sub-tree Replace 

sub-tree 
Usually fitness 

proportional 
Generational 
replacement None 
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