
07.09.15

1

INF3490 - Biologically inspired computing

Lecture 3: Eiben and Smith, chapter 5-6

Evolutionary Algorithms -
Population management and

popular algorithms
Jim Tørresen

Chapter 5:
Fitness, Selection and Population Management

•  Selection is second fundamental force for
evolutionary systems

•  Components exist of:
-  Population management models
-  Selection operators
-  Preserving diversity

2

Scheme of an EA:
General scheme of EAs

3

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination

Population Management Models:
Introduction
•  Two different population management models

exist:
–  Generational model

•  each individual survives for exactly one generation
•  the entire set of parents is replaced by the offspring

–  Steady-state model
•  one offspring is generated per generation
•  one member of population replaced

•  Generation Gap
–  The proportion of the population replaced
–  Parameter = 1.0 for G-GA, = 1/pop_size for SS-GA

4

07.09.15

2

Population Management Models:
Fitness based competition
•  Selection can occur in two places:

–  Selection from current generation to take part in
mating (parent selection)

–  Selection from parents + offspring to go into next
generation (survivor selection)

•  Selection operators work on whole individual
–  i.e. they are representation-independent !

•  Selection pressure: As selection pressure
increases, fitter solutions are more likely to
survive, or be chosen as parents

5

Example: roulette wheel selection

fitness(A) = 3

fitness(B) = 1

fitness(C) = 2

A C

1/6 = 17%

3/6 = 50%

B

2/6 = 33%

Parent Selection:
Fitness-Proportionate Selection

6

Stochastic universal sampling (SUS)
Select multiple individuals by making one spin of
the wheel with a number of equally spaced arms

Parent Selection:
Fitness-Proportionate Selection (FPS)

•  Probability for individual i to be selected for mating in a
population size µ with FPS is

•  Problems include
–  One highly fit member can rapidly take over if rest of population is

much less fit: Premature Convergence
–  At end of runs when fitnesses are similar, loss of selection pressure

•  Scaling can fix the last problem by:
–  Windowing:

where β is worst fitness in this (last n) generations
–  Sigma Scaling:

where c is a constant, usually 2.0

7

PFPS (i) = fi f j
j=1

µ

∑

f '(i) = f (i)−β t

f '(i) =max(f (i)− (f − c•σ f), 0)

Parent Selection:
Rank-based Selection
•  Attempt to remove problems of FPS by

basing selection probabilities on relative
rather than absolute fitness

•  Rank population according to fitness and
then base selection probabilities on rank
(fittest has rank µ-1 and worst rank 0)

•  This imposes a sorting overhead on the
algorithm, but this is usually negligible
compared to the fitness evaluation time

8

07.09.15

3

Rank-based Selection:
Linear Ranking

•  Parameterised by factor s: 1 < s ≤ 2
–  measures advantage of best individual

•  Simple 3 member example

9

Plin−rank (i) =
(2− s)
µ

+
2i(s−1)
µ(µ −1)

Rank-based selection:
Exponential Ranking

•  Linear Ranking is limited in selection pressure
•  Exponential Ranking can allocate more than 2

copies to fittest individual
•  Normalise constant factor c according to population

size

Sample mating pool from the selection probability
distribution (roulette wheel, stochastic universal
sampling)

10

Pexp−rank (i) =
1− e−i

c

Parent Selection:
Tournament Selection (1/2)
•  All methods above rely on global population

statistics
–  Could be a bottleneck esp. on parallel machines, very

large population
–  Relies on presence of external fitness function which

might not exist: e.g. evolving game players
•  Idea for a procedure using only local fitness

information:
–  Pick k members at random then select the best of

these
–  Repeat to select more individuals

11

Parent Selection:
Tournament Selection (2/2)

•  Probability of selecting i will depend on:
– Rank of i
– Size of sample k

•  higher k increases selection pressure

– Whether contestants are picked with
replacement

•  Picking without replacement increases selection pressure

– Whether fittest contestant always wins
(deterministic) or this happens with probability p

12

07.09.15

4

Parent Selection:
Uniform

•  Parents are selected by uniform random
distribution whenever an operator needs one/
some

•  Uniform parent selection is unbiased - every
individual has the same probability to be
selected

13

Puniform (i) =
1
µ

Survivor Selection
•  Managing the process of reducing the working

memory of the EA from a set of µ parents and λ
offspring to a set of µ individuals forming the
next generation

•  Survivor selection can be divided into two
approaches:
– Age-Based Selection

•  Fitness is not taken into account
•  In SS-GA can implement as “delete-

random” (not recommended) or as first-in-
first-out (a.k.a. delete-oldest)

– Fitness-Based Replacement 14

Fitness-based replacement (1/2)
•  Elitism

–  Always keep at least one copy of the fittest solution so far
–  Widely used in both population models (GGA, SSGA)

•  GENITOR: a.k.a. “delete-worst”
–  Rapid takeover: use with large populations or “no duplicates”

policy
•  Round-robin tournament (from EP)

–  P(t): µ parents, P’(t): µ offspring
–  Pairwise competitions in round-robin format:

•  Each solution x from P(t) ∪ P’(t) is evaluated against q other
randomly chosen solutions

•  For each comparison, a "win" is assigned if x is better than its
opponent

•  The µ solutions with the greatest number of wins are retained to be
parents of the next generation

–  Parameter q allows tuning selection pressure
–  Typically q = 10

15

Fitness-based replacement (2/2)
(from ES)
•  (µ,λ)-selection (best candidates can be lost)
-  based on the set of children only (λ > µ)
-  choose the best µ offspring for next generation

•  (µ+λ)-selection (elitist strategy)
-  based on the set of parents and children
-  choose the best µ offspring for next generation

•  Often (µ,λ)-selection is preferred for:
–  Better in leaving local optima

•  λ ≈ 7 • µ is a traditionally good setting (decreasing over
the last couple of years, λ ≈ 3 • µ seems more popular
lately)

16

07.09.15

5

Multimodality

Most interesting problems have more than one
locally optimal solution.

17

Multimodality:
Genetic Drift
•  Finite population with global mixing and

selection eventually convergence around one
optimum

•  Why?
•  Often might want to identify several possible

peaks
•  Sub-optimum can be more attractive

18

Approaches for Preserving Diversity:
Introduction (1/2)
•  Explicit vs implicit
•  Implicit approaches:

–  Impose an equivalent of geographical separation
–  Impose an equivalent of speciation

•  Explicit approaches
–  Make similar individuals compete for resources

(fitness)
–  Make similar individuals compete with each other

for survival

19

Approaches for Preserving Diversity:
Introduction (1/2)
Different spaces:

–  Genotype space
•  Set of representable solutions

–  Phenotype space
•  The end result
•  Neighbourhood structure may bear little relation with

genotype space
–  Algorithmic space

•  Equivalent of the geographical space on which life on earth
has evolved

•  Structuring the population into a number of sub-populations

20

07.09.15

6

Explicit Approaches for Preserving
Diversity: Fitness Sharing (1/2)

•  Restricts the number of individuals within a
given niche by “sharing” their fitness, so as to
allocate individuals to niches in proportion
to the niche fitness

•  need to set the size of the niche σshare in
either genotype or phenotype space

•  run EA as normal but after each generation
set

∑
=

= µ

1
)),((

)()('

j
jidsh

ifif sh(d) =
1− d /σ d ≤σ

0 otherwise

#

$
%

&
%

21

Explicit Approaches for Preserving
Diversity: Fitness Sharing (2/2)
•  Note: if we used sh(d) = 1 for d < σshare then

the sum that reduces the fitness would simply
count the number of neighbours, i.e.,
individuals closer than σshare

•  This creates an advantage of being alone in
the neighbourhood

•  Using 1 – d/ σshare instead of 1 implies that
we count distant neighbours less

22

Explicit Approaches for Preserving
Diversity: Crowding

•  Attempts to distribute individuals evenly
amongst niches

•  relies on the assumption that offspring will
tend to be close to parents

•  uses a distance metric in ph/genotype space
•  randomly shuffle and pair parents, produce 2

offspring
•  Each offspring competes with their nearest

parent for survival (using a distance measure)

23

Explicit Approaches for Preserving
Diversity: Crowding or Fitness sharing?

Observe the number of individuals per niche 24

Fitness
Sharing

Crowding

07.09.15

7

Implicit Approaches for Preserving
Diversity: Automatic Speciation
•  Either only mate with genotypically /

phenotypically similar members or
•  Add bits (tags) to problem representation

–  that are initially randomly set
–  subject to recombination and mutation
–  when selecting partner for recombination, only

pick members with a good match

25

Implicit Approaches for Preserving
Diversity: “Island” Model Parallel EAs

Periodic migration of individual solutions between populations

EA
EA

EA EA

EA

26

Implicit Approaches for Preserving
Diversity: “Island” Model Parallel EAs
•  Run multiple populations in parallel
•  After a (usually fixed) number of generations

(an Epoch), exchange individuals with
neighbours

•  Repeat until ending criteria met
•  Partially inspired by parallel/clustered

systems

27

Chapter 6:
Popular Evolutionary Algorithm Variants
Historical EA variants:
•  Genetic Algorithms
•  Evolution Strategies
•  Evolutionary Programming
•  Genetic Programming

28

Algorithm Chromosome
Representation

Crossover Mutation

Genetic Algorithm (GA) Array X X
Genetic Programming (GP) Tree X X
Evolution Strategies (ES) Array (X) X
Evolutionary Programming (EP) No constraints - X

07.09.15

8

Genetic Algorithms:
Overview Simple GA
•  Developed: USA in the 1960’s
•  Early names: J. Holland, K. DeJong, D.

Goldberg
•  Typically applied to:

–  discrete function optimization
–  benchmark for comparison with other algorithms
–  straightforward problems binary representation

•  Features:
–  not too fast
–  missing new variants (elitsm, sus)
–  often modelled by theorists

29

Genetic Algorithms:
Simple GA (SGA) summary

Representation Bit-strings
Recombination 1-Point crossover
Mutation Bit flip
Parent selection Fitness proportional – implemented

by Roulette Wheel
Survivor selection Generational

30

Genetic Algorithms:
SGA reproduction cycle
•  Select parents for the mating pool

 (size of mating pool = population size)
•  Shuffle the mating pool
•  Apply crossover for each consecutive pair

with probability pc, otherwise copy parents
•  Apply mutation for each offspring (bit-flip

with probability pm independently for each bit)
•  Replace the whole population with the

resulting offspring
31

Genetic Algorithms:
An example after Goldberg ’89
•  Simple problem: max x2 over {0,1,…,31}
•  GA approach:

–  Representation: binary code, e.g., 01101 ↔ 13
–  Population size: 4
–  1-point x-over, bitwise mutation
–  Roulette wheel selection
–  Random initialisation

•  We show one generational cycle done by
hand

32

07.09.15

9

X2 example: Selection

33

X2 example: Crossover

34

X2 example: Mutation

35

Genetic Algorithms:
The simple GA
•  Has been subject of many (early) studies

–  still often used as benchmark for novel GAs
•  Shows many shortcomings, e.g.,

–  Representation is too restrictive
–  Mutation & crossover operators only applicable

for bit-string & integer representations
–  Selection mechanism sensitive for converging

populations with close fitness values
–  Generational population model can be improved

with explicit survivor selection

36

07.09.15

10

Evolution Strategies:
Quick overview
•  Developed: Germany in the 1960’s
•  Early names: I. Rechenberg, H.-P. Schwefel
•  Typically applied to:

–  numerical optimisation
•  Attributed features:

–  fast
–  good optimizer for real-valued optimisation
–  relatively much theory

•  Special:
–  self-adaptation of (mutation) parameters standard

37

Evolution Strategies:
ES summary

Representation Real-valued vectors

Recombination Discrete or intermediary

Mutation Gaussian perturbation

Parent selection Uniform random

Survivor selection (µ,λ) or (µ+λ)

38

Evolution Strategies:
Example (1+1) ES

•  Task: minimimise f : Rn à R
•  Algorithm: “two-membered ES” using

–  Vectors from Rn directly as chromosomes
–  Population size 1
–  Only mutation creating one child
–  Greedy selection

39

Evolution Strategies:
Introductory example: mutation
mechanism

•  z values drawn from normal distribution N(ξ,σ)
–  mean ξ is set to 0
–  variation σ is called mutation step size

•  σ is varied on the fly by the “1/5 success rule”:
•  This rule resets σ after every k iterations by

–  σ = σ / c if ps > 1/5
–  σ = σ • c if ps < 1/5
–  σ = σ if ps = 1/5

•  where ps is the % of successful mutations, 0.8 ≤ c ≤ 1

40

07.09.15

11

Evolution Strategies:
Illustration of normal distribution

41

Another historical example:
the jet nozzle experiment

42

The famous jet nozzle experiment
(movie)

43

Evolution Strategies:
Representation
•  Chromosomes consist of three parts:

–  Object variables: x1,…,xn
–  Strategy parameters (ref. sec 4.4.2):

•  Mutation step sizes: σ1,…,σnσ

•  Rotation angles: α1,…, αnα

•  Not every component is always present
•  Full size: 〈 x1,…,xn, σ1,…,σn ,α1,…, αk 〉

 where k = n(n-1)/2 (no. of i,j pairs)

44

07.09.15

12

Evolution Strategies:
Recombination
•  Creates one child
•  Acts per variable / position by either

–  Averaging parental values, or
–  Selecting one of the parental values

•  From two or more parents by either:
–  Using two selected parents to make a child
–  Selecting two parents for each position

45

Evolution Strategies:
Names of recombinations

Two fixed
parents

Two parents
selected for
each i

zi = (xi + yi)/2 Local
intermediary

Global
intermediary

zi is xi or yi
chosen
randomly

Local discrete Global discrete

46

Evolution Strategies:
Parent selection

•  Parents are selected by uniform random
distribution whenever an operator needs one/
some

•  Thus: ES parent selection is unbiased - every
individual has the same probability to be
selected

47

Evolution Strategies:
Prerequisites for self-adaptation
•  µ > 1 to carry different strategies
•  λ > µ to generate offspring surplus
•  (µ,λ)-selection to get rid of misadapted σ‘s
•  Mixing strategy parameters by (intermediary)

recombination on them

48

07.09.15

13

Evolutionary Programming:
Quick overview
•  Developed: USA in the 1960’s
•  Early names: D. Fogel
•  Typically applied to:

–  traditional EP: prediction by finite state machines
–  contemporary EP: (numerical) optimization

•  Attributed features:
–  very open framework: any representation and mutation op’s

OK
–  crossbred with ES (contemporary EP)
–  consequently: hard to say what “standard” EP is

•  Special:
–  no recombination
–  self-adaptation of parameters standard (contemporary EP)

49

Evolutionary Programming:
Technical summary tableau

Representation Real-valued vectors
Recombination None
Mutation Gaussian perturbation
Parent selection Deterministic (each parent one

offspring)
Survivor selection Probabilistic (µ+µ)

50

Evolutionary Programming:
Historical EP perspective

•  EP aimed at achieving intelligence
•  Intelligence was viewed as adaptive

behaviour
•  Prediction of the environment was

considered a prerequisite to adaptive
behaviour

•  Thus: capability to predict is key to
intelligence

51

Evolutionary Programming:
Prediction by finite state machines
•  Finite state machine (FSM):

–  States S
–  Inputs I
–  Outputs O
–  Transition function δ : S x I → S x O
–  Transforms input stream into output stream

•  Can be used for predictions, e.g. to predict
next input symbol in a sequence

52

07.09.15

14

Evolutionary Programming:
FSM example

•  Consider the FSM with:
–  S = {A, B, C}
–  I = {0, 1}
–  O = {a, b, c}
–  δ given by a diagram

53

Evolutionary Programming:
FSM as predictor

•  Consider the following FSM
•  Task: predict next input
•  Quality: % of in(i+1) = outi
•  Given initial state C
•  Input sequence 011101
•  Leads to output 110111
•  Quality: 3 out of 5

54

Evolutionary Programming:
Modern EP

•  No predefined representation in general
•  Thus: no predefined mutation (must match

representation)
•  Often applies self-adaptation of mutation

parameters

55

Evolutionary Programming:
Representation

•  For continuous parameter optimisation
•  Chromosomes consist of two parts:

–  Object variables: x1,…,xn
–  Mutation step sizes: σ1,…,σn

•  Full size: 〈 x1,…,xn, σ1,…,σn 〉

56

07.09.15

15

Evolutionary Programming:
Mutation
•  Chromosomes: 〈 x1,…,xn, σ1,…,σn 〉
•  σi’ = σi • (1 + α • N(0,1))
•  xi’ = xi + σi’ • Ni(0,1)
•  α ≈ 0.2
•  boundary rule: σ’ < ε0 ⇒ σ’ = ε0
•  Other variants proposed & tried:

–  Using variance instead of standard deviation
–  Mutate σ-last
–  Other distributions, e.g, Cauchy instead of Gaussian

57

Evolutionary Programming:
Recombination
•  None
•  Rationale: one point in the search space

stands for a species, not for an individual and
there can be no crossover between species

•  Much historical debate “mutation vs.
crossover”

58

Evolutionary Programming:
Parent selection
•  Each individual creates one child by mutation
•  Thus:

–  Deterministic
–  Not biased by fitness

59

Evolutionary Programming:
Evolving checkers player (Fogel’02) (1/2)

•  Neural nets for evaluating future values
of moves are evolved

•  NNs have fixed structure with 5046
weights, these are evolved + one weight
for “kings”

•  Representation:
–  vector of 5046 real numbers for object

variables (weights)
–  vector of 5046 real numbers for σ‘s

•  Population size 15
60

07.09.15

16

Evolutionary Programming:
Evolving checkers player (Fogel’02) (2/2)
•  Tournament size q = 5
•  Programs (with NN inside) play against other

programs, no human trainer or hard-wired
intelligence

•  After 840 generation (6 months!) best
strategy was tested against humans via
Internet

•  Program earned “expert class” ranking
outperforming 99.61% of all rated players

61

Genetic Programming:
Quick overview
•  Developed: USA in the 1990’s
•  Early names: J. Koza
•  Typically applied to:

–  machine learning tasks (prediction, classification…)
•  Attributed features:

–  competes with neural nets and alike
–  needs huge populations (thousands)
–  slow

•  Special:
–  non-linear chromosomes: trees, graphs
–  mutation possible but not necessary

62

Genetic Programming:
Summary

Representation Tree structures
Recombination Exchange of subtrees
Mutation Random change in trees
Parent selection Fitness proportional
Survivor selection Generational replacement

63

Genetic Programming:
Example credit scoring (1/3)
•  Bank wants to distinguish good from bad

loan applicants
•  Model needed that matches historical data

64

ID No of
children

Salary Marital status OK?

ID-1 2 45000 Married 0
ID-2 0 30000 Single 1
ID-3 1 40000 Divorced 1
…

07.09.15

17

Genetic Programming:
Example credit scoring (2/3)
•  A possible model:
•  IF (NOC = 2) AND (S > 80000) THEN good

ELSE bad
•  In general:
•  IF formula THEN good ELSE bad
•  Only unknown is the right formula, hence
•  Our search space (phenotypes) is the set of

formulas
•  Natural fitness of a formula: percentage of well

classified cases of the model it stands for

65

Genetic Programming:
Example credit scoring (3/3)

IF (NOC = 2) AND (S > 80000) THEN good
ELSE bad
can be represented by the following tree

66

AND

S 2 NOC 80000

> =

Genetic Programming:
Offspring creation scheme

Compare
•  GA scheme using crossover AND mutation

sequentially (be it probabilistically)
•  GP scheme using crossover OR mutation

(chosen probabilistically)

67

Genetic Programming: GA vs GP

68

07.09.15

18

Genetic Programming: Selection

•  Parent selection typically fitness proportionate
•  Over-selection in very large populations

–  rank population by fitness and divide it into two groups:
–  group 1: best x% of population, group 2 other (100-x)%
–  80% of selection operations chooses from group 1, 20% from

group 2
–  for pop. size = 1000, 2000, 4000, 8000 x = 32%, 16%, 8%, 4%
–  motivation: to increase efficiency, %’s come from rule of thumb

•  Survivor selection:
–  Typical: generational scheme (thus none)
–  Recently steady-state is becoming popular for its

elitism 69

Genetic Programming:
Initialisation
•  Maximum initial depth of trees Dmax is set
•  Full method (each branch has depth = Dmax):

–  nodes at depth d < Dmax randomly chosen from
function set F

–  nodes at depth d = Dmax randomly chosen from
terminal set T

•  Grow method (each branch has depth ≤ Dmax):
–  nodes at depth d < Dmax randomly chosen from F ∪ T
–  nodes at depth d = Dmax randomly chosen from T

•  Common GP initialisation: ramped half-and-half,
where grow & full method each deliver half of
initial population

70

Genetic Programming:
Bloat
•  Bloat = “survival of the fattest”, i.e., the tree

sizes in the population are increasing over
time

•  Ongoing research and debate about the
reasons

•  Needs countermeasures, e.g.
–  Prohibiting variation operators that would deliver

“too big” children
–  Parsimony pressure: penalty for being oversized

71

Summary: The standard EA variants

Name Representation Crossover Mutation Parent
selection

Survivor
selection

Specialty

Genetic
Algorithm Usually fixed-length

vector Any or none Any Any Any None

Evolution
Strategies Real-valued vector

Discrete or
intermediate

recombination
Gaussian Random draw Best N Strategy

parameters

Evolutionary
Programming Real-valued vector None Gaussian One child each Tournament Strategy

parameters

Genetic
Programming Tree Swap sub-tree Replace

sub-tree
Usually fitness

proportional
Generational
replacement None

72

