
INF3490 - Biologically inspired computing
Lecture 4: Eiben and Smith,

Working with evolutionary algorithms (chpt 9)
Hybrid algorithms (chpt 10)

Multi-objective optimization (chpt 12)

Jim Tørresen

Chapter 9:
Working with Evolutionary Algorithms

1.  Experiment design
2.  Algorithm design
3.  Test problems
4.  Measurements and statistics
5.  Some tips and summary

2

Experimentation

•  Has a goal or goals
•  Involves algorithm design and implementation
•  Needs problem(s) to run the algorithm(s) on
•  Amounts to running the algorithm(s) on the

problem(s)
•  Delivers measurement data, the results
•  Is concluded with evaluating the results in the light

of the given goal(s)
•  Is often documented (thesis, papers, web,…)

3

Experimentation:
Goals for Research

•  Show that EC is applicable in a (new) problem
domain (real-world applications)

•  Show that my_EA is better than benchmark_EA
•  Show that EAs outperform traditional algorithms
•  Optimize or study impact of parameters on the

performance of an EA
•  Investigate algorithm behavior (e.g. interaction

between selection and variation)
•  See how an EA scales-up with problem size
•  …

4

Example: Repetitive Problems

•  Optimising Internet shopping
 delivery route

–  Need to run regularly/repetitively
–  Different destinations each day
–  Limited time to run algorithm each day
–  Must always be reasonably good route in

limited time

5

Example: Design Problems
•  Optimising spending on improvements to

national road network
–  Total cost: billions of Euro
–  Computing costs negligible
–  Six months to run algorithm on hundreds computers
–  Many runs possible
–  Must produce very good result just once

6

Algorithm design

•  Design a representation
•  Design a way of mapping a genotype to a phenotype
•  Design a way of evaluating an individual
•  Design suitable mutation operator(s)
•  Design suitable recombination operator(s)
•  Decide how to select individuals to be parents
•  Decide how to select individuals for the next

generation (how to manage the population)
•  Decide how to start: initialization method
•  Decide how to stop: termination criterion

7

Test problems

1.  Recognized benchmark problem repository
(typically “challenging”)

2.  Problem instances made by random generator
3.  Frequently encountered or otherwise important

variants of given real-world problems

Choice has severe implications on:

–  generalizability and
–  scope of the results

8

Getting Problem Instances (1/3)
Benchmarks
•  Standard data sets in problem repositories, e.g.:

–  OR-Library
 www.brunel.ac.uk/~mastjjb/jeb/info.html

–  UCI Machine Learning Repository
www.ics.uci.edu/~mlearn/MLRepository.html

•  Advantage:
–  Well-chosen problems and instances (hopefully)
–  Much other work on these à results comparable

•  Disadvantage:
–  Not real – might miss crucial aspect
–  Algorithms get tuned for popular test suites

9

Getting Problem Instances (2/3)
Problem instance generators
•  Problem instance generators produce simulated

data for given parameters, e.g.:
–  GA/EA Repository of Test Problem Generators

http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.cs.uwyo.edu/~wspears/
generators.html

•  Advantage:
–  Allow very systematic comparisons for they

•  can produce many instances with the same characteristics
•  enable gradual traversal of a range of characteristics

(hardness)
–  Can be shared allowing comparisons with other researchers

•  Disadvantage
–  Not real – might miss crucial aspect
–  Given generator might have hidden bias 10

Getting Problem Instances (3/3)
Real-world problems
•  Testing on (own collected) real data
•  Advantages:

–  Results could be considered as very relevant viewed from
the application domain (data supplier)

•  Disadvantages
–  Can be over-complicated
–  Can be few available sets of real data
–  May be commercial sensitive – difficult to publish and to

allow others to compare
–  Results are hard to generalize

11

12

Typical Results from Several EA Runs

Run #

Fitness/
Performance

1 2 3 4 5 N

Basic rules of experimentation

•  EAs are stochastic !
 never draw any conclusion from a single run

–  perform sufficient number of independent runs
–  use statistical measures (averages, standard deviations)
–  use statistical tests to assess reliability of conclusions

•  EA experimentation is about comparison !
 always do a fair competition

–  use the same amount of resources for the competitors
–  try different comp. limits (to cope with turtle/hare effect)
–  use the same performance measures

13

Things to Measure

Many different ways. Examples:
•  Average result in given time
•  Average time for given result
•  Proportion of runs within % of target
•  Best result over n runs
•  Amount of computing required to reach target

in given time with % confidence
•  …

14

What time units do we use?

•  Elapsed time?
–  Depends on computer, network, etc…

•  CPU Time?
–  Depends on skill of programmer, implementation, etc…

•  Generations?
–  Incomparable when parameters like population size change

•  Evaluations?
–  Evaluation time could depend on algorithm, e.g. direct vs.

indirect representation
–  Evaluation time could be small compared to other steps in

the EA (e.g. genotype to phenotype translation)
15

Measures

•  Performance measures (off-line)
–  Efficiency (alg. speed, also called performance)

•  Execution time
•  Average no. of evaluations to solution (AES, i.e., number of

generated points in the search space)
–  Effectiveness (solution quality, also called accuracy)

•  Success rate (SR): % of runs finding a solution
•  Mean best fitness at termination (MBF)

•  “Working” measures (on-line)
–  Population distribution (genotypic)
–  Fitness distribution (phenotypic)
–  Improvements per time unit or per genetic operator
–  … 16

Example: off-line performance
measure evaluation

-50
51-60

61-70
71-80

81-90
91-100

Alg A
Alg B

0

5

10

15

20

25

30

Nr
. o

f r
un

s
en

di
ng

 w
ith

 th
is

 fi
tn

es
s

Best fitness at termination
17

Which
algorithm
is better?
Why?
When?

Example: on-line performance
measure evaluation

Populations mean (best) fitness

18

Which algorithm is better? Why? When?

Algorithm B

Algorithm A

Example: averaging on-line measures

19

Averaging can “choke” interesting information

Example: overlaying on-line measures

20

Overlay of curves can lead to very “cloudy” figures

Statistical Comparisons and
Significance
•  Algorithms are stochastic, results have

element of “luck”
•  If a claim is made “Mutation A is better than

mutation B”, need to show statistical
significance of comparisons

•  Fundamental problem: two series of samples
(random drawings) from the SAME
distribution may have DIFFERENT averages
and standard deviations

•  Tests can show if the differences are
significant or not 21

Example
Trial Old Method New Method

1 500 657
2 600 543
3 556 654
4 573 565
5 420 654
6 590 712
7 700 456
8 472 564
9 534 675
10 512 643

Average 545.7 612.3

22

Is the new method better?

Example (cont’d)

23

•  Standard deviations supply additional info
•  T-test (and alike) indicate the chance that the values came

from the same underlying distribution (difference is due to
random effects) E.g. with 7% chance in this example.

Summary of tips for experiments
•  Be organized
•  Decide what you want & define appropriate measures
•  Choose test problems carefully
•  Make an experiment plan (estimate time when possible)
•  Perform sufficient number of runs
•  Keep all experimental data (never throw away anything)
•  Include in publications all necessary parameters to make

others able to repeat your experiments
•  Use good statistics (“standard” tools from Web, MS, R)
•  Present results well (figures, graphs, tables, …)
•  Watch the scope of your claims
•  Aim at generalizable results (use separate data set for training

and testing)
•  Publish code for reproducibility of results (if applicable)
•  Publish data for external validation (open science)

24

Chapter 10:
Hybridisation with Other Techniques:
Memetic Algorithms

1.  Why to Hybridise
2.  What is a Memetic Algorithm?
3.  Where to hybridise
4.  Local Search

–  Lamarckian vs. Baldwinian adaptation

25

1. Why Hybridise

•  Might be looking at improving on existing
techniques (non-EA)

•  Might be looking at improving EA search for
good solutions

26

1. Why Hybridise
Michalewicz’s view on EAs in context

27

2. What is a Memetic Algorithm?

•  The combination of Evolutionary Algorithms with
Local Search Operators that work within the EA
loop has been termed “Memetic Algorithms”

•  Term also applies to EAs that use instance-
specific knowledge

•  Memetic Algorithms have been shown to be orders
of magnitude faster and more accurate than EAs
on some problems, and are the “state of the art” on
many problems

28

3. Where to Hybridise:

29

3. Where to Hybridise: In initialization

•  Seeding
–  Known good solutions are added

•  Selective initialization
–  Generate 𝑘𝑁 solutions, keep best 𝑁

•  Refined start
–  Perform local search on initial population

30

3. Where to Hybridise:
Intelligent mutation and crossover

•  Mutation bias
–  Mutation operator has bias towards certain changes

•  Crossover hill-climber
–  Test all 1-point crossover results, choose best

•  “Repair” mutation
–  Use heuristic to make infeasible solution feasible

31

4. Local Search:
Local Search
•  Defined by combination of neighbourhood and

pivot rule
•  Related to landscape metaphor
•  N(x) is defined as the set of points that can be

reached from x with one application of a move
operator
–  e.g. bit flipping search on binary problems

32

N(d) = {a,c,h} d
h

b

c

a

g

e f

4. Local Search:
Pivot Rules
•  Is the neighbourhood searched randomly,

systematically or exhaustively ?
•  does the search stop as soon as a fitter

neighbour is found (Greedy Ascent)
•  or is the whole set of neighbours examined

and the best chosen (Steepest Ascent)
•  of course there is no one best answer, but

some are quicker than others to run

33

4. Local Search and Evolution

•  Do offspring inherit what their parents have
learnt in life?

–  Yes - Lamarckian learning
•  Improved fitness and genotype

–  No - Baldwinian learning:
•  Improved fitness only

34

4. Local Search:
Induced landscapes

35

“Raw”
Fitness

Lamarckian

points

Baldwin
landscape

Hybrid Algorithms Summary

•  It is common practice to hybridise EA’s when
using them in a real world context.

•  This may involve the use of operators from other
algorithms which have already been used on the
problem, or the incorporation of domain-specific
knowledge

•  Memetic algorithms have been shown to be orders of
magnitude faster and more accurate than EAs on
some problems, and are the “state of the art” on
many problems

36

Chapter 12:
Multiobjective Evolutionary Algorithms

•  Multiobjective optimisation problems (MOP)
-  Pareto optimality

•  EC approaches
-  Evolutionary spaces
-  Preserving diversity

37

Multi-Objective Problems (MOPs)

•  Wide range of problems can be categorised
by the presence of a number of n possibly
conflicting objectives:
–  buying a car: speed vs. price vs. reliability
–  engineering design: lightness vs. strength

•  Two problems:
–  finding set of good solutions
–  choice of best for the particular application

38

An example: Buying a car

cost

speed

39

Two approaches to multiobjective
optimisation

•  Weighted sum (scalarisation):
–  transform into a single objective optimisation method

–  compute a weighted sum of the different objectives

•  A set of multi-objective solutions (Pareto front):
–  The population-based nature of EAs used to

simultaneously search for a set of points approximating
Pareto front

40

Comparing solutions

•  Optimisation task:
Minimize both f1 and f2

•  Then:
a is better than b
a is better than c
a is worse than e
a and d are incomparable

Objective space

41

Dominance relation

•  Solution x dominates solution y, (x ≤ y), if:
–  x is better than y in at least one objective,
–  x is not worse than y in all other objectives

solutions
dominated

by x

solutions
dominating

x

42

Pareto optimality

•  Solution x is non-dominated among a set of solutions
Q if no solution from Q dominates x

•  A set of non-dominated solutions from the entire
feasible solution space is the Pareto-optimal set,
its members Pareto-optimal solutions

•  Pareto-optimal front: an image of the Pareto-optimal
set in the objective space

43

Illustration of the concepts

f1(x)

f2(x)
min

min 44

Illustration of the concepts

f1(x)

f2(x)
min

min 45

A practical example:
The beam design problem

d

Minimize weight and deflection of a beam (Deb, 2001):

46

Formal definition
2

1

3

2 4

max 3

max
3

max

(,)
4

64(,)
3

0.01 m 0.05 m
0.2 m 1.0 m

32

7800 kg/m , 2 kN
207 GPa
300 MPa, 0.005 m

y

y

df d l l

Plf d l
E d

d
l
Pl S
d

P
E
S

π
ρ

δ
π

σ
π

δ δ

ρ

δ

=

= =

≤ ≤

≤ ≤

= ≤

≤

= =

=

= =

•  Minimize

•  minimize

•  subject to

 where

(beam weight)

(beam deflection)

(maximum stress)

47

Feasible solutions

Decision (variable) space Objective space

48

Goal: Finding non-dominated solutions

49

Goal of multiobjective optimisers

•  Find a set of non-dominated solutions (approximation
set) following the criteria of:
–  convergence (as close as possible to the Pareto-

optimal front),
–  diversity (spread, distribution)

50

EC approach:
Requirements
1.  Way of assigning fitness,

–  usually based on dominance

2.  Preservation of a diverse set of points
–  similarities to multi-modal problems

3.  Remembering all the non-dominated
points you have seen
–  usually using elitism or an archive

51

EC approach:
1. Fitness Assignment

•  Could use aggregating approach and change
weights during evolution
–  no guarantees

•  Different parts of population use different criteria

–  no guarantee of diversity

•  Dominance (made a breakthrough for MOEA)
–  ranking or depth based
–  fitness related to whole population 52

EC approach:
2. Diversity maintenance
•  Usually done by niching techniques such as:

–  fitness sharing
–  adding amount to fitness based on inverse

distance to nearest neighbour (minimisation)
–  (adaptively) dividing search space into boxes and

counting occupancy

•  All rely on some distance metric in genotype /
phenotype space

53

EC approach:
3. Remembering Good Points

•  Could just use elitist algorithm, e.g.
–  (µ + λ) replacement
–  crowding distance

•  Common to maintain an archive of non-
dominated points
–  some algorithms use this as a second population

that can be in recombination etc.
–  others divide archive into regions too, e.g. PAES

54

Multi objective problems - Summary

•  MO problems occur very frequently

•  EAs are very good in solving MO problems

•  MOEAs are one of the most successful EC
subareas

55

