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Chapter 9: 
Working with Evolutionary Algorithms 

1.  Experiment design 
2.  Algorithm design 
3.  Test problems 
4.  Measurements and statistics 
5.  Some tips and summary 
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Experimentation   

•  Has a goal or goals  
•  Involves algorithm design and implementation  
•  Needs problem(s) to run the algorithm(s) on 
•  Amounts to running the algorithm(s) on the 

problem(s) 
•  Delivers measurement data, the results 
•  Is concluded with evaluating the results in the light 

of the given goal(s) 
•  Is often documented (thesis, papers, web,…) 
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Experimentation: 
Goals for Research 

•  Show that EC is applicable in a (new) problem 
domain (real-world applications) 

•  Show that my_EA is better than benchmark_EA 
•  Show that EAs outperform traditional algorithms  
•  Optimize or study impact of parameters on the 

performance of an EA 
•  Investigate algorithm behavior (e.g. interaction 

between selection and variation) 
•  See how an EA scales-up with problem size 
•  … 
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Example: Repetitive Problems 

•  Optimising Internet shopping  
 delivery route 

–  Need to run regularly/repetitively 
–  Different destinations each day 
–  Limited time to run algorithm each day 
–  Must always be reasonably good route in 

limited time 
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Example: Design Problems 
•  Optimising spending on improvements to 

national road network 
–  Total cost: billions of Euro 
–  Computing costs negligible 
–  Six months to run algorithm on hundreds computers 
–  Many runs possible 
–  Must produce very good result just once 

6  



Algorithm design 

•  Design a representation 
•  Design a way of mapping a genotype to a phenotype 
•  Design a way of evaluating an individual 
•  Design suitable mutation operator(s) 
•  Design suitable recombination operator(s) 
•  Decide how to select individuals to be parents 
•  Decide how to select individuals for the next 

generation (how to manage the population) 
•  Decide how to start: initialization method 
•  Decide how to stop: termination criterion 
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Test problems 

1.  Recognized benchmark problem repository 
(typically “challenging”)  

2.  Problem instances made by random generator 
3.  Frequently encountered or otherwise important 

variants of given real-world problems 
 
Choice has severe implications on: 

–  generalizability and  
–  scope of the results 
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Getting Problem Instances (1/3) 
Benchmarks 
•  Standard data sets in problem repositories, e.g.: 

–  OR-Library 
 www.brunel.ac.uk/~mastjjb/jeb/info.html  

–  UCI Machine Learning Repository                   
www.ics.uci.edu/~mlearn/MLRepository.html  

•  Advantage:  
–  Well-chosen problems and instances (hopefully) 
–  Much other work on these à results comparable 

•  Disadvantage: 
–  Not real – might miss crucial aspect  
–  Algorithms get tuned for popular test suites 
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Getting Problem Instances (2/3) 
Problem instance generators 
•  Problem instance generators produce simulated 

data for given parameters, e.g.: 
–  GA/EA Repository of Test Problem Generators  

http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.cs.uwyo.edu/~wspears/
generators.html  

•  Advantage: 
–  Allow very systematic comparisons for they 

•  can produce many instances with the same characteristics 
•  enable gradual traversal of a range of characteristics 

(hardness) 
–  Can be shared allowing comparisons with other researchers 

•  Disadvantage 
–  Not real – might miss crucial aspect 
–  Given generator might have hidden bias 10  



Getting Problem Instances (3/3) 
Real-world problems 
•  Testing on (own collected) real data  
•  Advantages: 

–  Results could be considered as very relevant viewed from 
the application domain (data supplier) 

•  Disadvantages 
–  Can be over-complicated 
–  Can be few available sets of real data 
–  May be commercial sensitive – difficult to publish and to 

allow others to compare 
–  Results are hard to generalize 
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Typical Results from Several EA Runs 

Run # 

Fitness/   
Performance 

1 2 3 4 5 N 



Basic rules of experimentation 

•  EAs are stochastic !  
 never draw any conclusion from a single run  

–  perform sufficient number of independent runs  
–  use statistical measures (averages, standard deviations)  
–  use statistical tests to assess reliability of conclusions 

•  EA experimentation is about comparison ! 
 always do a fair competition 

–  use the same amount of resources for the competitors 
–  try different comp. limits (to cope with turtle/hare effect) 
–  use the same performance measures    
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Things to Measure 

Many different ways. Examples: 
•  Average result in given time 
•  Average time for given result 
•  Proportion of runs within % of target 
•  Best result over n runs 
•  Amount of computing required to reach target 

in given time with % confidence 
•  … 
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What time units do we use? 

•  Elapsed time?  
–  Depends on computer, network, etc… 

•  CPU Time? 
–  Depends on skill of programmer, implementation, etc… 

•  Generations? 
–  Incomparable when parameters like population size change 

•  Evaluations? 
–  Evaluation time could depend on algorithm, e.g. direct vs. 

indirect representation 
–  Evaluation time could be small compared to other steps in 

the EA (e.g. genotype to phenotype translation) 
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Measures 

•  Performance measures (off-line) 
–  Efficiency (alg. speed, also called performance) 

•  Execution time 
•  Average no. of evaluations to solution (AES, i.e., number of 

generated points in the search space) 
–  Effectiveness (solution quality, also called accuracy) 

•  Success rate (SR): % of runs finding a solution  
•  Mean best fitness at termination (MBF) 

•  “Working” measures (on-line) 
–  Population distribution (genotypic) 
–  Fitness distribution (phenotypic) 
–  Improvements per time unit or per genetic operator 
–  … 16  



Example: off-line performance 
measure evaluation  
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Example: on-line performance 
measure evaluation 

Populations mean (best) fitness 
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Which algorithm is better? Why? When? 

Algorithm B 

Algorithm A 



Example: averaging on-line measures  
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Averaging can “choke” interesting information 



Example: overlaying on-line measures 
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Overlay of curves can lead to very “cloudy” figures 



Statistical Comparisons and 
Significance 
•  Algorithms are stochastic, results have 

element of “luck” 
•  If a claim is made “Mutation A is better than 

mutation B”, need to show statistical 
significance of comparisons 

•  Fundamental problem: two series of samples 
(random drawings) from the SAME 
distribution may have DIFFERENT averages 
and standard deviations 

•  Tests can show if the differences are 
significant or not 21  



Example 
Trial Old Method New Method

1 500 657
2 600 543
3 556 654
4 573 565
5 420 654
6 590 712
7 700 456
8 472 564
9 534 675
10 512 643

Average 545.7 612.3
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Is the new method better? 



Example (cont’d) 
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•  Standard deviations supply additional info 
•  T-test (and alike) indicate the chance that the values came 

from the same underlying distribution (difference is due to 
random effects) E.g. with 7% chance in this example. 



Summary of tips for experiments 
•  Be organized 
•  Decide what you want & define appropriate measures 
•  Choose test problems carefully 
•  Make an experiment plan (estimate time when possible) 
•  Perform sufficient number of runs 
•  Keep all experimental data (never throw away anything) 
•  Include in publications all necessary parameters to make 

others able to repeat your experiments 
•  Use good statistics (“standard” tools from Web, MS, R) 
•  Present results well (figures, graphs, tables, …) 
•  Watch the scope of your claims 
•  Aim at generalizable results (use separate data set for training 

and testing) 
•  Publish code for reproducibility of results (if applicable) 
•  Publish data for external validation (open science) 
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Chapter 10: 
Hybridisation with Other Techniques: 
Memetic Algorithms 

1.  Why to Hybridise 
2.  What is a Memetic Algorithm? 
3.  Where to hybridise 
4.  Local Search 

–  Lamarckian vs. Baldwinian adaptation 
 

25 



1. Why Hybridise 

•  Might be looking at improving on existing 
techniques (non-EA) 

•  Might be looking at improving EA search for 
good solutions  
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1. Why Hybridise 
Michalewicz’s  view on EAs in context 
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2. What is a Memetic Algorithm? 

•  The combination of Evolutionary Algorithms with 
Local Search Operators that work within the EA 
loop has been termed “Memetic Algorithms” 

•  Term also applies to EAs that use instance-
specific knowledge 

•  Memetic Algorithms have been shown to be orders 
of magnitude faster and more accurate than EAs 
on some problems, and are the “state of the art” on 
many problems 
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3. Where to Hybridise: 
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3. Where to Hybridise: In initialization 

•  Seeding 
–  Known good solutions are added 

•  Selective initialization 
–  Generate 𝑘𝑁 solutions, keep best 𝑁 

•  Refined start 
–  Perform local search on initial population 
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3. Where to Hybridise:             
Intelligent mutation and crossover 

•  Mutation bias 
–  Mutation operator has bias towards certain changes 

•  Crossover hill-climber 
–  Test all 1-point crossover results, choose best 

•  “Repair” mutation 
–  Use heuristic to make infeasible solution feasible 
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4. Local Search: 
Local Search 
•  Defined by combination of neighbourhood and 

pivot rule 
•  Related to landscape metaphor 
•  N(x) is defined as the set of points that can be 

reached from x with one application of a move 
operator 
–  e.g. bit flipping search on binary problems 
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4. Local Search: 
Pivot Rules 
•  Is the neighbourhood searched randomly, 

systematically or exhaustively ? 
•  does the search stop as soon as a fitter 

neighbour is found (Greedy Ascent)  
•  or is the whole set of neighbours examined 

and the best chosen (Steepest Ascent) 
•  of course there is no one best answer,  but 

some are quicker than others to run ........ 
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4. Local Search and Evolution 

•  Do offspring inherit what their parents have 
learnt in life? 

–  Yes - Lamarckian learning 
•  Improved fitness and genotype 

–  No - Baldwinian learning:  
•  Improved fitness only 
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4. Local Search: 
Induced landscapes 
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Hybrid Algorithms Summary 

•  It is common practice to hybridise EA’s when 
using them in a real world context. 

•  This may involve the use of operators from other 
algorithms which have already been used on the 
problem, or the incorporation of domain-specific 
knowledge 

•  Memetic algorithms have been shown to be orders of 
magnitude faster and more accurate than EAs on 
some problems, and are the “state of the art” on 
many problems 
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Chapter 12: 
Multiobjective Evolutionary Algorithms 

•  Multiobjective optimisation problems (MOP) 
-  Pareto optimality 

•  EC approaches 
-  Evolutionary spaces 
-  Preserving diversity 
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Multi-Objective Problems (MOPs) 

•  Wide range of problems can be categorised 
by the presence of a number of n possibly 
conflicting objectives: 
–  buying a car: speed vs. price vs. reliability 
–  engineering design: lightness vs. strength 

•  Two problems: 
–  finding set of good solutions 
–  choice of best for the particular application 
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An example: Buying a car 

cost 

speed 
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Two approaches to multiobjective 
optimisation 

•  Weighted sum (scalarisation): 
–  transform into a single objective optimisation method 

–  compute a weighted sum of the different objectives 

•  A set of multi-objective solutions (Pareto front): 
–  The population-based nature of EAs used to 

simultaneously  search for a set of points approximating 
Pareto front 
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Comparing solutions 

•  Optimisation task: 
Minimize both f1 and f2 

•  Then: 
a is better than b 
a is better than c 
a is worse than e 
a and d are incomparable 

Objective space 
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Dominance relation 

•  Solution x dominates solution y, (x ≤ y), if: 
–  x is better than y in at least one objective, 
–  x is not worse than y in all other objectives 

 

solutions 
dominated 

by x 

solutions 
dominating 

x 
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Pareto optimality 

•  Solution x is non-dominated among a set of solutions 
Q if no solution from Q dominates x 

•  A set of non-dominated solutions from the entire 
feasible solution space is the Pareto-optimal set,  
its members Pareto-optimal solutions 

•  Pareto-optimal front: an image of the Pareto-optimal 
set in the objective space 
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Illustration of the concepts 

f1(x) 

f2(x) 
min 

min 44 



Illustration of the concepts 

f1(x) 

f2(x) 
min 

min 45 



A practical example: 
The beam design problem 

d 

Minimize weight and deflection of a beam (Deb, 2001): 

46 
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Feasible solutions 

Decision (variable) space Objective space 
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Goal: Finding non-dominated solutions 
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Goal of multiobjective optimisers 

•  Find a set of non-dominated solutions (approximation 
set) following the criteria of: 
–  convergence (as close as possible to the Pareto-

optimal front), 
–  diversity (spread, distribution) 
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EC approach: 
Requirements 
1.  Way of assigning fitness,  

–  usually based on dominance 

2.  Preservation of a diverse set of points 
–  similarities to multi-modal problems 

3.  Remembering all the non-dominated 
points you have seen 
–  usually using elitism or an archive 
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EC approach:  
1. Fitness Assignment 

•  Could use aggregating approach and change 
weights during evolution 
–  no guarantees 

  
•  Different parts of population use different criteria 

–  no guarantee of diversity 

•  Dominance (made a breakthrough for MOEA) 
–  ranking or depth based 
–  fitness related to whole population 52 



EC approach: 
2. Diversity maintenance 
•  Usually done by niching techniques such as: 

–  fitness sharing 
–  adding amount to fitness based on inverse 

distance to nearest neighbour (minimisation) 
–  (adaptively) dividing search space into boxes and 

counting occupancy 

•  All rely on some distance metric in genotype / 
phenotype space 
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EC approach: 
3. Remembering Good Points 

•  Could just use elitist algorithm, e.g.  
–  ( µ + λ ) replacement  
–  crowding distance 

•  Common to maintain an archive of non-
dominated points 
–  some algorithms use this as a second population 

that can be in recombination etc. 
–  others divide archive into regions too, e.g. PAES 
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Multi objective problems - Summary 

•  MO problems occur very frequently  

•  EAs are very good in solving MO problems 

•  MOEAs are one of the most successful EC 
subareas  

55 


