

INF3490 - Biologically inspired computing

Lecture 5th October 2015

Multi-Layer Neural Network

Jim Tørresen

UiO Department of Informatics
University of Oslo

A Quick Overview

- Linear Models are easy to understand.
- · However, they are very simple.
 - They can only identify flat decision boundaries (straight lines, planes, hyperplanes, ...).
- Majority of interesting data are not linearly separable. Then?

A Quick Overview

- **Learning** in the neural networks (NN) happens in the weights.
- Weights are associated with connections.
- Thus, it is sensible to add more connections to perform more complex computations.
- Two ways for non-lin. separation (not exclusive):
 - Recurrent Network: connect the output neurons to the inputs with feedback connections.
 - Multi-layer perceptron network: add neurons between the input nodes and the outputs.

MLP Decision Boundary – Nonlinear Problems, Solved!

In contrast to perceptrons, multilayer networks can learn not only multiple decision boundaries, but the boundaries may also be nonlinear.

UiO Department of Informatics

Properties of the Multi-Layer Network

- Layer *n-1* is fully connected to layer *n*.
- No connections within a single layer.
- No direct connections between input and output layers.
- Fully connected; all nodes in one layer connect to all nodes in the next layer.
- Number of output units need not equal number of input units.
- Number of hidden units per layer can be more or less than input or output units.

UiO Department of Informatics

Multilayer Network Structure

- A neural network with one or *more* layers of *nodes* between the input and the output nodes is called *multilayer network*.
- The multilayer network structure, or architecture, or topology, consists of an input layer, one or more hidden layers, and one output layer.
- The input nodes pass values to the first hidden layer, its nodes to the second and so until producing outputs.
 - A network with a layer of input units, a layer of hidden units and a layer of output units is a two-layer network.
 - A network with two layers of hidden units is a *three-layer network*, and so on.

UiO: Department of Informatics **XOR Again** В C_{in} C_{out} \mathbf{D}_{in} D_{out} 0 0 -0.5 0 0 -0.5 0 0.5 0.5 0 1 0 0.5 0 0 0 0.5 1.5 -0.5

UiO Department of Informatics

Then...

The problem is: How to learn Multi Layer Perceptrons??

Solution: Backpropagation Algorithm (Rumelhart and colleagues,1986)

UiO • Department of Informatics University of Oslo

How to Train MLP?

- · How we can train the network, so that
 - The weights are adapted to generate correct (target answer)?
- In Perceptron, errors are computed at the output.
- In MLP,
 - Don't know which weights are wrong:
 - Don't know the correct activations for the neurons in the hidden layers.

Backpropagation of Error

- During the backward pass the weights are adjusted in accordance with the **error correction** rule.
- The error is the **actual** output is subtracted from the **desired** output.
- The weights are adjusted to minimize this error.

Neural Networks and Logistic Regression by Lucila Ohno-Machado Decision Systems Group, Brigham and Women's Hospital, Department of Radiology

21

UiO : Department of Informatics
University of Oslo

Training MLPs

Backward Pass

- 1. Calculate the output errors
- 2. Update last layer of weights.
- 3. Propagate error backward, update hidden weights.
- 4. Until first layer is reached.

UiO : Department of Informatics

Training MLPs

Forward Pass

UiO : Department of Informatics

University of Oslo

- 1. Put the input values in the input layer.
- 2. Calculate the activations of the hidden nodes.
- 3. Calculate the activations of the output nodes.

Back Propagation Algorithm

- The backpropagation training algorithm uses the gradient descent technique to minimize the mean square difference between the desired and actual outputs.
- The network is trained initially selecting **small random weights** and then presenting all training data incrementally.
- Weights are adjusted after every trial until weights converge and the error is reduced to an acceptable value.

_-

Gradient Descent Learning

- · Target: Minimize the error.
- Harder than Perceptron:
 - Many weights
 - Which ones are wrong; inputhidden or hidden-output?

 Compute gradient => differentiate sum-of squares error function.

UiO Department of Informatics
University of Oslo

Error Function

- Single scalar function for entire network.
- Parameterized by weights (objects of interest).
- Multiple errors of different signs should not cancel out.
- Sum-of-squares error:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{k} (t_k - y_k)^2 = \frac{1}{2} \sum_{k} \left(t_k - \sum_{i} w_{ik} x_i \right)^2$$

UiO : Department of Informatics University of Oslo

Error Terms

- Need to differentiate the activation function
- Chain rule of differentiation.
- Gives us the following error terms (deltas)
 - For the outputs

$$\delta_k = (y_k - t_k) \, y_k (1 - y_k)$$

· For the hidden nodes

$$\delta_j = a_j (1 - a_j) \sum_k w_{jk} \delta_k$$

Update Rules

- · This gives us the necessary update rules
 - For the weights connected to the outputs:

$$w_{jk} \leftarrow w_{jk} - \eta \delta_k a_j^{\text{hidden}}$$

• For the weights on the hidden nodes:

$$v_{ij} \leftarrow v_{ij} - \eta \delta_i x_i$$

• The learning rate η depends on the application. Values between 0.1 and 0.9 have been used in many applications.

UiO: Department of Informatics

Summary of Backpropagation

- 1. Introduce inputs.
- 2. Feed values forward through network.
- 3. Compute sum-of-squares error at outputs.
- 4. Compute the delta terms at the output by differentiation.
- 5. Use this to update the weights connecting the last hidden layer to the outputs.
- 6. Once these are correct, propagate deltas back to the neurons of the hidden layers.
- 7. Compute the delta terms for these neurons.
- 8. Use them to update the next set of weights.
- 9. Repeat until the inputs are reached.

UiO Department of Informatics

Algorithm (sequential)

- 1. Apply an input vector and calculate all activations, a and u
- 2. Evaluate deltas for all output units:

$$\Delta_i = (d_i - y_i)g'(a_i)$$

3. Propagate deltas backwards to hidden layer deltas:

$$\delta_i = g'(u_i) \sum_k \Delta_k w_{ki}$$

4. Update weights:

$$v_{ij} \leftarrow v_{ij} + \eta \delta_i x_j$$

$$w_{ij} \leftarrow w_{ij} + \eta \Delta_i z_j$$

Example: Backpropagation

Once weight changes are computed for all units, weights are updated at the same time (bias included as weights here). An example:

Use identity activation function (ie g(a) = a) for simplicity of example

UiO Department of Informatics
University of Oslo

Example: Backpropagation

Forward pass. Calculate 1st layer activations:

$$u_1 = -1x0 + 0x1 + 1 = 1$$

$$u_2 = 0x0 + 1x1 + 1 = 2$$

UiO Department of Informatics

Example: Backpropagation

All biases set to 1. Will not draw them for clarity.

Learning rate h = 0.1

Have input [0 1] with target [1 0].

UiO : Department of Informatics
University of Oslo

Example: Backpropagation

Calculate first layer outputs by passing activations thru activation functions

$$z_1 = g(u_1) = 1$$

$$z_2 = g(u_2) = 2$$

Example: Backpropagation

Calculate 2nd layer outputs (weighted sum through activation functions):

$$y_1 = a_1 = 1x1 + 0x2 + 1 = 2$$

$$y_2 = a_2 = -1x1 + 1x2 + 1 = 2$$

UiO : Department of Informatics

Example: Backpropagation

Calculate weight changes for 1st layer (cf perceptron learning):

$$w_{ij} \leftarrow w_{ij} + \eta \Delta_i z_j$$

UiO: Department of Informatics

Example: Backpropagation

Backward pass:

$$\Delta_i = (d_i - y_i)g'(a_i)$$

Target =[1, 0] so
$$d_1 = 1$$
 and $d_2 = 0$. So:

$$\Delta_1 = (d_1 - y_1) = 1 - 2 = -1$$

 $\Delta_2 = (d_2 - y_2) = 0 - 2 = -2$

UiO Department of Informatics
University of Oslo

Example: Backpropagation

Weight changes will be:

$$w_{ij} \leftarrow w_{ij} + \eta \Delta_i z_j$$

Example: Backpropagation

Calculate hidden layer deltas:

41

UiO Department of Informatics
University of Oslo

Example: Backpropagation

And are multiplied by inputs

UiO Department of Informatics

University of Oslo

Example: Backpropagation

D's propagate back:

 $\delta_1 = -1 + 2 = 1$ $\delta_2 = 0 - 2 = -2$

UiO Department of Informatics
University of Oslo

Example: Backpropagation

Finally change weights:

Note that the weights multiplied by the zero input are unchanged as they do not contribute to the error

We have also changed biases (not shown)

Example: Backpropagation

Now go forward again (would normally use a new input vector):

45

UiO Department of Informatics
University of Oslo

Activation Function

- We need to compute the derivative of activation function *g*
- What do we want in an activation function?
 - Differentiable
 - Nonlinear (more powerful)
 - Bounded range (for numerical stability)

47

UiO Department of Informatics

Example: Backpropagation

Now go forward again (would normally use a new input vector):

Outputs now closer to target value [1, 0]

Network Training

- · Training set shown repeatedly until stopping criteria are met.
- Usual to randomize order of training patterns presented for each epoch in order to avoid correlation between consecutive training pairs being learnt (order effects).
- · When should the weights be updated?
 - After all inputs seen (batch)
 - · More accurate estimate of gradient
 - Converges to local minimum faster (Jim doesn't agree!)
 - · After each input is seen (sequential)
 - · Simpler to program and most commonly used
 - May escape from local minima (change order or presentation)
- Both ways, need many epochs passes through the whole dataset

UiO Department of Informatics

Selecting Initial Weight Values

- The MLP algorithm suggest that weights are initialized to small random numbers (<± 1), both positive and negative
- Choice of initial weight values is important as this decides starting position in weight space. That is, how far away from global minimum
- Aim is to select weight values which produce midrange function signals (not in only saturated signal, see sigmoid function)
- Select weight values randomly from uniform probability distribution
- Normalise weight values so number of weighted connections per unit produces midrange function signal

UiO : Department of Informatics
University of Oslo

Network Topology

- How many layers?
- · How many neurons per layer?
- No good answers
 - At most 3 weight layers, usually 2
 - Test several different networks
- Possible types of adaptive algorithms (not default in MLP):
 - start from a large network and successively remove some neurons and links until network performance degrades.
 - begin with a small network and introduce new neurons until performance is satisfactory.

Input Normalization

- Stops the weights from getting unnecessarily large.
- · Treat each data dimension independently.
- Each input variable should be processed so that the mean value is close to zero or at least very small when compared to the standard deviation.

57

UiO : Department of Informatics
University of Oslo

Generalisation

- · Aim of neural network learning:
 - Generalise from training examples to all possible inputs.
- The objective of learning is to achieve good *generalization* to new cases; otherwise we would just use a look-up table.
- Under-training is **bad**.
- Over-training is also bad.

UiO Department of Informatics

Amount of Training

- How much training data is needed?
- How many epochs are needed?
- Data:
 - Count the weights
 - Rule of thumb: use 10 times more data than the number of weights

58

UiO Department of Informatics

Generalization

 Generalization can be viewed as a mathematical interpolation or regression over a set of training points:

Overfitting

- Overfitting occurs when a model begins to learn the bias of the training data rather than learning to generalize.
- Overfitting generally occurs when a model is excessively complex in relation to the amount of data available.
- A model which overfits the training data will generally have poor predictive performance, as it can exaggerate minor fluctuations in the data.

UiO S Department of Informatics
University of Oslo

Overfitting

- The training data contains information about the regularities in the mapping from input to output.
- · Training data also contains bias:
 - There is sampling bias. There will be accidental regularities due to the finite size of the training set.
 - The target values may also be unreliable or noisy.
- When we fit the model, it cannot tell which regularities are relevant and which are caused by sampling error.
 - So it fits both kinds of regularity.
 - If the model is very flexible it can model the sampling error really well. This is not what we want.

UiO * Department of Informatics
University of Oslo

Overfitting

The Solution: Cross-Validation

To maximize generalization and avoid overfitting, split data into three sets:

- Training set: Train the model.
- Validation set: Judge the model's generalization ability during training.
- Test set: Judge the model's generalization ability after training.

65

UiO Department of Informatics

Validation set

- Data unseen by training algorithm not used for backpropagation.
- Network is not trained on this data, so we can use it to measure generalization ability.
- Goal is to maximize generalization ability, so we should minimize the error on this data set.

66

UiO Department of Informatics

Testing set

- Data unseen during training and validation.
- Has no influence on when to stop training.
- With early stopping, we've maximized the ability to generalize to the validation set;
- To judge the final result, we should measure its ability to generalize to completely unseen data.

k-Fold Cross Validation

- Cross-validation leaves less training data.
- Generalization ability is still only measured on a small set (which will be biased).
- Solution: repeat over many different splits.
 - Divide all data into k sets (or folds).
 - For i = 1...k:
 - Train on data[i], validate on data[i+1], test on rest.
 - Average the results.

69

UiO Department of Informatics
University of Oslo

Some questions

- · What is overfitting?
- How do we avoid overfitting?
- What do you do if you have limited data and would like to do validation?

