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INF3490 - Biologically inspired computing 

Lecture 5th October 2015 
Multi-Layer Neural Network 

Jim Tørresen 
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A Quick Overview (Perceptron) 
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A Quick Overview (Decision Surface) 
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A Quick Overview  

•  Linear Models are easy to understand. 

•  However, they are very simple. 

–  They can only identify flat decision boundaries 
(straight lines, planes, hyperplanes, ...). 

•  Majority of interesting data are not linearly 
separable. Then? 
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A Quick Overview 
•  Learning in the neural networks (NN) happens in 

the weights. 
•  Weights are associated with connections. 
•  Thus, it is sensible to add more connections to 

perform more complex computations. 

•  Two ways for non-lin. separation (not exclusive): 
– Recurrent Network: connect the output neurons to 

the inputs with feedback connections. 
– Multi-layer perceptron network: add neurons 

between the input nodes and the outputs. 

Multi-Layer Perceptron (MLP) 
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Input Layer 

Hidden Layer Output Layer 

-1 -1 

7	
  

What do the extra layers gain you?  

x1 

xn 

1st Question? 

 Start with looking at what a single layer can’t do. 
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XOR Problem 

XOR (Exclusive OR) Problem 
 
 
 
 
 
 
 

Perceptron does not work here.  

Single layer generates a linear decision boundary. 



05.10.15 

3 

MLP Decision Boundary – Nonlinear 
Problems, Solved! 
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In contrast to perceptrons, multilayer networks can learn not 
only  multiple decision boundaries, but the boundaries may 
also be nonlinear. 

Input nodes Internal nodes Output nodes 

X2 

X1 
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Multilayer Network Structure 

•   A neural network with one or more layers of nodes between 
the input and the output nodes is called multilayer network.  
 

•   The multilayer network structure, or architecture, or topology, 
consists of an input layer, one or more hidden layers, and one 
output layer. 
 

•   The input nodes pass values to the first hidden layer, its nodes 
to the second and so until producing outputs. 

•    A network with a layer of input units, a layer of hidden 
units and a layer of output units is a two-layer network. 
•    A network with two layers of hidden units is a three-
layer network, and so on.  

•  Layer n-1 is fully connected to layer n. 
•  No connections within a single layer. 
•  No direct connections between input and output 
layers. 
•  Fully connected; all nodes in one layer connect to all 
nodes in the next layer. 

•  Number of output units need not equal number of 
input units. 
•  Number of hidden units per layer can be more or less 
than input or output units. 

Properties of the Multi-Layer Network What Do Each of The Layers Do? 

1st layer draws linear 
boundaries 

2nd layer combines the 
boundaries 

 

 

3rd layer can generate 
arbitrarily complex boundaries 
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Straight lines (surfaces), linear separable, half plane bounded by hyperplane. 
 

MultiLayer Perceptron: Decision 
Boundaries 
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Convex areas (open or closed). 

Multi Layer Perceptron: Decision 
Boundaries 
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Combinations of convex areas.  

MultiLayer Perceptron:                         
Decision Boundaries 
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Minsky & Papert (1969) offered solution to XOR problem by combining 
perceptron unit responses using a second layer of units. 
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Solution for XOR : Add a Hidden Layer !! 
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XOR Again 
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How to Train MLP? 

•  How we can train the network, so that 
–  The weights are adapted to generate correct (target 

answer)? 

•  In Perceptron, errors are computed at the output. 

•  In MLP,    
–  Don’t know which weights are wrong: 

–  Don’t know the correct activations for the neurons in 
the hidden layers. 
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x1 (tj - yj) 

19	
  

Then… 

The problem is: How to learn Multi Layer 
Perceptrons?? 
 

Solution: Backpropagation Algorithm (Rumelhart 
and colleagues,1986) 

Backpropagation 
	
  
Rumelhart, Hinton and Williams (1986) (though actually invented 
earlier in a PhD thesis relating to economics)  

xk 

xi 

wki 

wjk 

δj 

δk 

yj Backward step:  
propagate errors from 
output to hidden layer 

Forward step:  
Propagate activation from 
input to output layer 
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Backpropagation of Error 

Neural Networks and Logistic Regression by Lucila 
Ohno-Machado Decision Systems Group, Brigham and 
Women’s Hospital, Department of Radiology 

•   During the backward pass the 
we igh t s a re ad j us ted i n 
accordance with the error 
correction rule.  

•   The error is the actual output 
is subtracted from the desired 
output.  

•   The weights are adjusted to 
minimize this error.  
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Training MLPs 
Forward Pass 

1.  Put the input values in the input layer. 
2.  Calculate the activations of the hidden nodes. 
3.  Calculate the activations of the output nodes. 
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Training MLPs 
Backward Pass 

1.  Calculate the output errors 
2.  Update last layer of weights. 
3.  Propagate error backward, update hidden weights. 
4.  Until first layer is reached. 
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•   The backpropagation training algorithm uses 
the gradient descent technique to minimize 
the mean square difference between the 
desired and actual outputs.  

•   The network is trained initially selecting small 
random weights and then presenting all 
training data incrementally.  

•   Weights are adjusted after every trial until 
weights converge and the error is reduced to an 
acceptable value.  

Back Propagation Algorithm 
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Gradient Descent Learning 

•  Target: Minimize the error. 
•  Harder than Perceptron: 

•  Many weights 
•  Which ones are wrong; input-

hidden or hidden-output? 

•  Use gradient descent learning 
•  C o m p u t e  g r a d i e n t  = > 

differentiate sum-of squares 
error function. 

x1 (tj - yj) 

? 
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Gradient Descent 
E 

The weight is the only 
factor relevant to the error. 

w 
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Error Function 

•  Single scalar function for entire network. 
•  Parameterized by weights (objects of interest). 
•  Multiple errors of different signs should not cancel out. 
•  Sum-of-squares error: 
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Error Terms 

•  Need to differentiate the activation function 
•  Chain rule of differentiation. 
•  Gives us the following error terms (deltas) 

•  For the outputs 

•  For the hidden nodes 
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Update Rules 

•  This gives us the necessary update rules 

•  For the weights connected to the outputs: 

•  For the weights on the hidden nodes: 

•  The learning rate η depends on the application. 
Values between 0.1 and 0.9 have been used in 
many applications. 30	
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Summary of Backpropagation 
1.  Introduce inputs. 
2.  Feed values forward through network. 

3.  Compute sum-of-squares error at outputs. 

4.  Compute the delta terms at the output by differentiation. 

5.  Use this to update the weights connecting the last 
hidden layer to the outputs. 

6.  Once these are correct, propagate deltas back to the 
neurons of the hidden layers. 

7.  Compute the delta terms for these neurons. 

8.  Use them to update the next set of weights. 

9.  Repeat until the inputs are reached. 

Algorithm (sequential) 
 
1. Apply an input vector and calculate all activations, a and u 
2. Evaluate deltas for all output units: 
 
 
3. Propagate deltas backwards to hidden layer deltas: 
 
 
 
 
4. Update weights: 
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Once weight changes are computed for all units, weights are updated  
at the same time (bias included as weights here). An example: 

y1 

y2 

x1 

x2 

v11= -1 

v21= 0 

v12= 0 

v22= 1 

v10= 1 
v20= 1 

w11= 1 

w21= -1 

w12= 0 

w22= 1 

Use identity activation function (ie g(a) = a) for simplicity of example 

Example: Backpropagation 
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All biases set to 1. Will not draw them for clarity.  

Learning rate h = 0.1 

y1 

y2 

x1 

x2 

v11= -1 

v21= 0 

v12= 0 

v22= 1 

w11= 1 

w21= -1 

w12= 0 

w22= 1 

Have input [0 1] with target [1 0].  

x1= 0 
 

x2= 1 
 

Example: Backpropagation 

35	
  

Forward pass. Calculate 1st layer activations: 

y1 

y2 

v11= -1 

v21= 0 

v12= 0 

v22= 1 

w11= 1 

w21= -1 

w12= 0 

w22= 1 
u2 = 2 

u1 = 1 

u1 = -1x0 + 0x1 +1 = 1 

u2 = 0x0 + 1x1 +1 = 2 

x1= 0 

x2= 1 

Example: Backpropagation 
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Calculate first layer outputs by passing activations thru activation 
functions 

y1 

y2 

x1 

x2 

v11= -1 

v21= 0 

v12= 0 

v22= 1 

w11= 1 

w21= -1 

w12= 0 

w22= 1 
z2 = 2 

z1 = 1 

z1 = g(u1) = 1 

z2 = g(u2)  = 2 

Example: Backpropagation 
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Calculate 2nd layer outputs (weighted sum through activation 
functions): 

y1= 2 

y2= 2 
 

x1 

x2 

v11= -1 

v21= 0 

v12= 0 

v22= 1 

w11= 1 

w21= -1 

w12= 0 

w22= 1 

 y1 = a1 = 1x1 + 0x2 +1 = 2 

 y2 = a2 = -1x1 + 1x2 +1 = 2 

Example: Backpropagation 

z1 = 1 

z1 = 2 
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Backward pass: 

Δ1= -1 

Δ2= -2 
 

x1 

x2 

v11= -1 

v21= 0 

v12= 0 

v22= 1 

w11= 1 

w21= -1 

w12= 0 

w22= 1 
Target =[1, 0] so d1 = 1 and d2 = 0. So: 

	

Δ1 = (d1 -  y1 )= 1 – 2 = -1 
	

Δ2 = (d2 -  y2 )= 0 – 2 = -2 

)(')( iiii agyd −=Δ

Example: Backpropagation 

39	
  

Calculate weight changes for 1st layer (cf perceptron learning): 

Δ1 z1 =-1 x1 

x2 

v11= -1 

v21= 0 

v12= 0 

v22= 1 

w11= 1 
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Δ1 z2 =-2 

Δ2 z1 =-2 

Δ2 z2 =-4 

wij ← wij +ηΔiz j

Example: Backpropagation 

40	
  

Weight changes will be: 
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Example: Backpropagation 
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Calculate hidden layer deltas: 

Δ1= -1 

Δ2= -2 
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Example: Backpropagation 
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D’s propagate back: 

Δ1= -1 

Δ2= -2 
 

x1 

x2 

v11= -1 

v21= 0 

v12= 0 

v22= 1 

δ1= 1 

δ2 = -2 

δ1 = - 1 + 2 = 1 
δ2 = 0 – 2 = -2 

∑Δ=
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Example: Backpropagation 
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And are multiplied by inputs: 

Δ1= -1 

Δ2= -2 
 

v11= -1 

v21= 0 

v12= 0 

v22= 1 

δ1 x1 = 0 

δ2 x2 = -2 

x2= 1 
 

x1= 0 
 

δ2 x1 = 0 

δ1 x2 = 1 

jiijij xvv ηδ+←

Example: Backpropagation 
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Finally change weights: 

v11= -1 

v21= 0 

v12= 0.1 

v22= 0.8 
x2= 1 
 

x1= 0 
 

w11= 0.9 

w21= -1.2 

w12= -0.2 

w22= 0.6 

Note that the weights multiplied by the zero input are unchanged as they 
do not contribute to the error 

We have also changed biases (not shown) 

jiijij xvv ηδ+←

Example: Backpropagation 



05.10.15 

12 

45	
  

Now go forward again (would normally use a new input vector): 

v11= -1 

v21= 0 

v12= 0.1 

v22= 0.8 
x2= 1 
 

x1= 0 
 

w11= 0.9 

w21= -1.2 

w12= -0.2 

w22= 0.6 

z2 = 1.6 

z1 = 1.2 

Example: Backpropagation 
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Now go forward again (would normally use a new input vector): 

v11= -1 

v21= 0 

v12= 0.1 

v22= 0.8 
x2= 1 
 

x1= 0 
 

w11= 0.9 

w21= -1.2 

w12= -0.2 

w22= 0.6 y2 = 0.32 

y1 = 1.66 

Outputs now closer to target value [1, 0] 

Example: Backpropagation 
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Activation Function 

•  We need to compute the derivative of activation function g 
 
•  What do we want in an activation function? 

•  Differentiable 
•  Nonlinear (more powerful) 
•  Bounded range (for numerical stability) 
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Hard Limit Function 

1.0 

-1.0 

x 

y 

Discontinuity where the 
value changes from 0 to 1. 



05.10.15 

13 

49	
  

A Quick Overview (Activation Functions) 
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y 

a 
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threshold linear 

piece-wise linear sigmoid 
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Sigmoidal (Logistic) Function-Common in MLP 

Note: when net  = 0,  g = 0.5 

iak
i

i eak
ag −+

=
−+

=
1
1

)exp(1
1)(

•    Where k is a positive 
constant. 
 

•   The sigmoidal function gives 
a value in range of 0 to 1. 
 

•    Alternatively can use 
tanh(ka) which is same shape 
but in range –1 to 1. 
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Learning Capacity 

Output of one sigmoid 
Addition of two sigmoids 

52	
  

Learning Capacity 

Addition of two ridges 
Unique maximum 

Addition of more ridges and 
transformation with another 
sigmoid 
Localised response 
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Learning Capacity 

Any function can be approximated as the 
summation of many responses 54	
  

•  The MLP algorithm suggest that weights are initialized to 
small random numbers (<± 1), both positive and negative  

•  Choice of initial weight values is important as this decides 
starting position in weight space. That is, how far away from 
global minimum 

•   Aim is to select weight values which produce midrange 
function  signals (not in only saturated signal, see sigmoid function) 

•    Select weight values randomly from uniform probability 
distribution 

•    Normalise weight values so number of weighted 
connections per unit produces midrange function signal 
 
 

 

 

Selecting Initial Weight Values 
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Network Training 
•  Training set shown repeatedly until stopping criteria are met. 
 

•  Usual to randomize order of training patterns presented for each epoch 
in order to avoid correlation between consecutive training pairs being 
learnt (order effects). 

•  When should the weights be updated? 
•  After all inputs seen (batch) 

•  More accurate estimate of gradient 
•  Converges to local minimum faster (Jim doesn´t agree!) 

•  After each input is seen (sequential) 
•  Simpler to program and most commonly used 
•  May escape from local minima (change order or presentation) 

•  Both ways, need many epochs - passes through the whole dataset 
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Network Topology 

•  How many layers? 
•  How many neurons per layer? 
•  No good answers 

•  At most 3 weight layers, usually 2 
•  Test several different networks 

•  Possible types of adaptive algorithms (not default in MLP): 
–  start from a large network and successively remove some 

neurons and links until network performance degrades. 
–  begin with a small network and introduce new neurons until 

performance is satisfactory. 



05.10.15 

15 

57	
  

Input Normalization 

•  Stops the weights from getting unnecessarily large. 

•  Treat each data dimension independently. 

•  Each input variable should be processed so that the 
mean value is close to zero or at least very small when 
compared to the standard deviation. 
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Amount of Training 

•  How much training data is 
needed? 

•  How many epochs are needed? 

•  Data:  
–  Count the weights 
–  Rule of thumb: use 10 times                        

more data than the number                               
of weights 
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Generalisation 

•  Aim of neural network learning: 
•  Generalise from training examples to all possible 

inputs. 
 

•  The objective of learning is to achieve good 
generalization to new cases; otherwise we would just 
use a look-up table. 

•  Under-training is bad. 
•  Over-training is also bad. 

60	
  

Generalization 

•  Generalization can be viewed as a mathematical 
interpolation or regression over a set of training 
points: 

 
 

f(x) 

x 
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•  Overfitting occurs when a model begins to learn the bias 
of the training data rather than learning to generalize. 

•  Overfitting generally occurs when a model is excessively 
complex in relation to the amount of data available.  

•  A model which overfits the training data will generally 
have poor predictive performance, as it can exaggerate 
minor fluctuations in the data. 

Overfitting 
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Overfitting 
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•  The training data contains information about the regularities in 
the mapping from input to output.  

•  Training data also contains bias: 
–  There is sampling bias. There will be accidental 

regularities due to the finite size of the training set. 
–  The target values may also be unreliable or noisy. 
 

•  When we fit the model, it cannot tell which regularities are 
relevant and which are caused by sampling error.  
–  So it fits both kinds of regularity. 
–  If the model is very flexible it can model the sampling error 

really well. This is not what we want. 

Overfitting 
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The Problem of Overfitting 

•  Approximation of the function y = f(x) : 

2 neurons in hidden layer 

5 neurons in hidden layer 

40 neurons in hidden layer 

x 

y 
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The Solution:  Cross-Validation 

To maximize generalization and avoid overfitting, split data 
into three sets: 

•  Training set:  Train the model. 

•  Validation set:  Judge the model’s generalization ability 
during training. 

•  Test set:  Judge the model’s generalization ability after 
training. 
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Validation set 

•  Data unseen by training algorithm – not used for 
backpropagation. 

•  Network is not trained on this data, so we can use it to 
measure generalization ability. 

•  Goal is to maximize generalization ability, so we should 
minimize the error on this data set. 
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Early Stopping 

Error 

Training 

Number of epochs 

Validation 

Time to stop training 

Tes$ng	
  set	
  

•  Data	
  unseen	
  during	
  training	
  and	
  valida:on.	
  
•  Has	
  no	
  influence	
  on	
  when	
  to	
  stop	
  training.	
  
•  With	
  early	
  stopping,	
  we’ve	
  maximized	
  the	
  ability	
  
to	
  generalize	
  to	
  the	
  valida$on	
  set;	
  

•  To	
  judge	
  the	
  final	
  result,	
  we	
  should	
  measure	
  its	
  
ability	
  to	
  generalize	
  to	
  completely	
  unseen	
  data.	
  

68	
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k-Fold Cross Validation 

•  Cross-­‐valida:on	
  leaves	
  less	
  training	
  data.	
  
•  Generaliza:on	
  ability	
  is	
  s:ll	
  only	
  measured	
  on	
  a	
  
small	
  set	
  (which	
  will	
  be	
  biased).	
  

•  Solu:on:	
  	
  repeat	
  over	
  many	
  different	
  splits.	
  
–  Divide	
  all	
  data	
  into	
  k	
  sets	
  (or	
  folds).	
  
–  For	
  i	
  =	
  1…k:	
  

•  Train	
  on	
  data[i],	
  validate	
  on	
  data[i+1],	
  test	
  on	
  rest.	
  
–  Average	
  the	
  results.	
  

69	
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Leave-one-out Cross Validation 

Some questions 

•  What is overfitting? 

•  How do we avoid overfitting? 

•  What do you do if you have limited data and 
would like to do validation? 
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