

# INF3490 - Biologically inspired computing

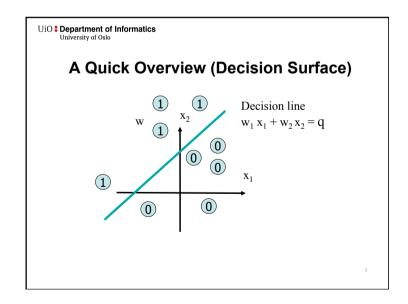
Lecture 5th October 2015

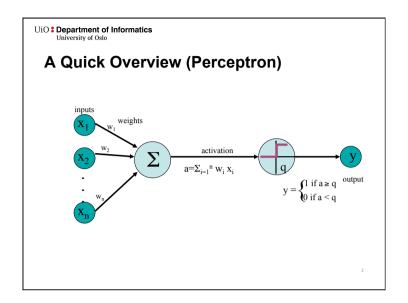
Multi-Layer Neural Network

Jim Tørresen









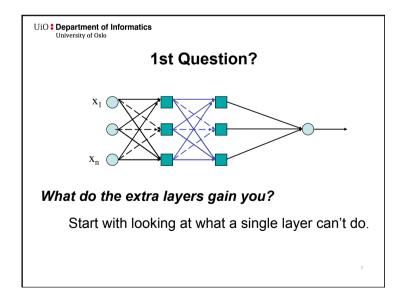
UiO Department of Informatics
University of Oslo

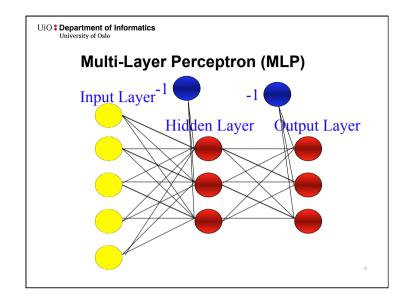
#### **A Quick Overview**

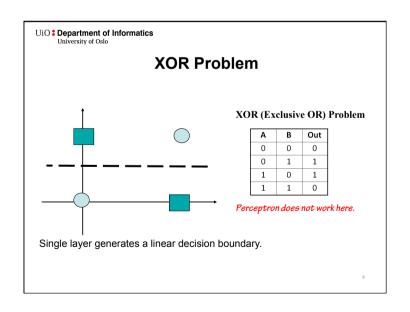
- Linear Models are easy to understand.
- · However, they are very simple.
  - They can only identify flat decision boundaries (straight lines, planes, hyperplanes, ...).
- Majority of interesting data are not linearly separable. Then?

#### **A Quick Overview**

- **Learning** in the neural networks (NN) happens in the weights.
- Weights are associated with connections.
- Thus, it is sensible to add more connections to perform more complex computations.
- Two ways for non-lin. separation (not exclusive):
  - Recurrent Network: connect the output neurons to the inputs with feedback connections.
  - Multi-layer perceptron network: add neurons between the input nodes and the outputs.

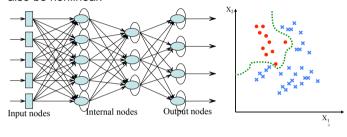






# MLP Decision Boundary – Nonlinear Problems, Solved!

In contrast to perceptrons, multilayer networks can learn not only multiple decision boundaries, but the boundaries may also be nonlinear.



UiO Department of Informatics

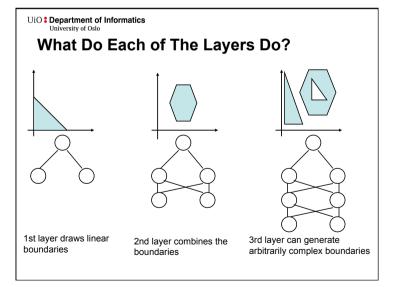
## **Properties of the Multi-Layer Network**

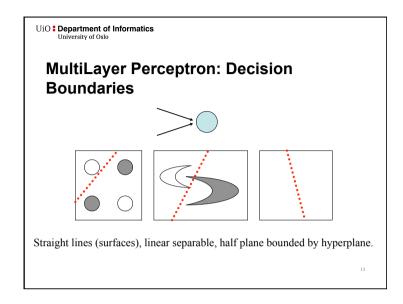
- Layer *n-1* is fully connected to layer *n*.
- No connections within a single layer.
- No direct connections between input and output layers.
- Fully connected; all nodes in one layer connect to all nodes in the next layer.
- Number of output units need not equal number of input units.
- Number of hidden units per layer can be more or less than input or output units.

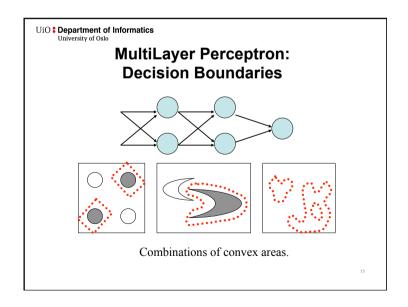
UiO Department of Informatics

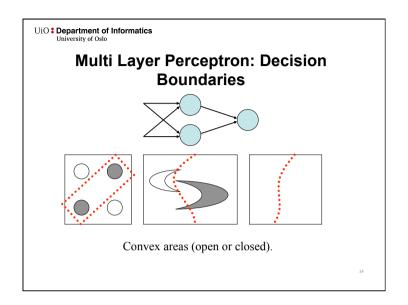
### **Multilayer Network Structure**

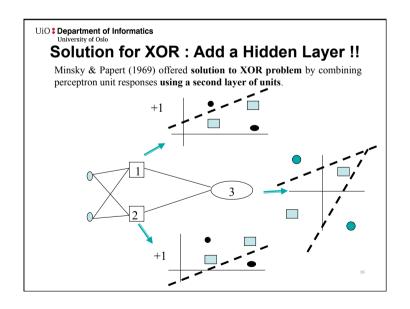
- A neural network with one or *more* layers of *nodes* between the input and the output nodes is called *multilayer network*.
- The multilayer network structure, or architecture, or topology, consists of an input layer, one or more hidden layers, and one output layer.
- The input nodes pass values to the first hidden layer, its nodes to the second and so until producing outputs.
  - A network with a layer of input units, a layer of hidden units and a layer of output units is a two-layer network.
  - A network with two layers of hidden units is a *three-layer network*, and so on.











#### UiO: Department of Informatics **XOR Again** В $C_{in}$ $C_{out}$ $\mathbf{D}_{in}$ D<sub>out</sub> 0 0 -0.5 0 0 -0.5 0 0.5 0.5 0 1 0 0.5 0 0 0 0.5 1.5 -0.5

UiO Department of Informatics

#### Then...

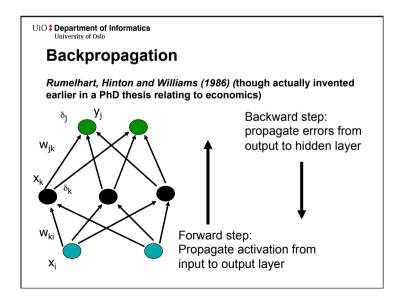
The problem is: How to learn Multi Layer Perceptrons??

**Solution**: Backpropagation Algorithm (Rumelhart and colleagues,1986)

UiO • Department of Informatics University of Oslo

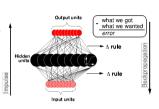
#### **How to Train MLP?**

- · How we can train the network, so that
  - The weights are adapted to generate correct (target answer)?
- In Perceptron, errors are computed at the output.
- In MLP,
  - Don't know which weights are wrong:
  - Don't know the correct activations for the neurons in the hidden layers.



## **Backpropagation of Error**

- During the backward pass the weights are adjusted in accordance with the **error correction** rule.
- The error is the **actual** output is subtracted from the **desired** output.
- The weights are adjusted to minimize this error.



Neural Networks and Logistic Regression by Lucila Ohno-Machado Decision Systems Group, Brigham and Women's Hospital, Department of Radiology

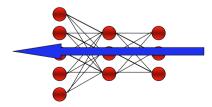
21

UiO : Department of Informatics
University of Oslo

## **Training MLPs**

#### **Backward Pass**

- 1. Calculate the output errors
- 2. Update last layer of weights.
- 3. Propagate error backward, update hidden weights.
- 4. Until first layer is reached.



UiO : Department of Informatics

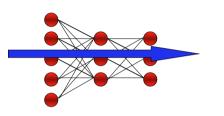
## **Training MLPs**

#### **Forward Pass**

UiO : Department of Informatics

University of Oslo

- 1. Put the input values in the input layer.
- 2. Calculate the activations of the hidden nodes.
- 3. Calculate the activations of the output nodes.



# **Back Propagation Algorithm**

- The backpropagation training algorithm uses the gradient descent technique to minimize the mean square difference between the desired and actual outputs.
- The network is trained initially selecting **small random weights** and then presenting all training data incrementally.
- Weights are adjusted after every trial until weights converge and the error is reduced to an acceptable value.

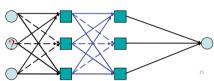
\_-

## **Gradient Descent Learning**

- · Target: Minimize the error.
- Harder than Perceptron:
  - Many weights
  - Which ones are wrong; inputhidden or hidden-output?



 Compute gradient => differentiate sum-of squares error function.

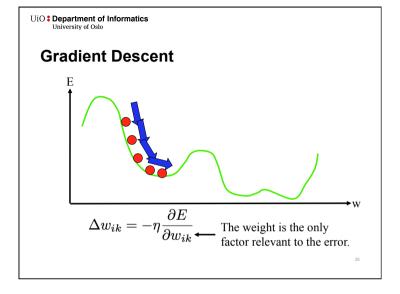


UiO Department of Informatics
University of Oslo

#### **Error Function**

- Single scalar function for entire network.
- Parameterized by weights (objects of interest).
- Multiple errors of different signs should not cancel out.
- Sum-of-squares error:

$$E(\mathbf{w}) = \frac{1}{2} \sum_{k} (t_k - y_k)^2 = \frac{1}{2} \sum_{k} \left( t_k - \sum_{i} w_{ik} x_i \right)^2$$



UiO : Department of Informatics University of Oslo

#### **Error Terms**

- Need to differentiate the activation function
- Chain rule of differentiation.
- Gives us the following error terms (deltas)
  - For the outputs

$$\delta_k = (y_k - t_k) \, y_k (1 - y_k)$$

· For the hidden nodes

$$\delta_j = a_j (1 - a_j) \sum_k w_{jk} \delta_k$$

## **Update Rules**

- · This gives us the necessary update rules
  - For the weights connected to the outputs:

$$w_{jk} \leftarrow w_{jk} - \eta \delta_k a_j^{\text{hidden}}$$

• For the weights on the hidden nodes:

$$v_{ij} \leftarrow v_{ij} - \eta \delta_i x_i$$

• The learning rate  $\eta$  depends on the application. Values between 0.1 and 0.9 have been used in many applications.

UiO: Department of Informatics

## **Summary of Backpropagation**

- 1. Introduce inputs.
- 2. Feed values forward through network.
- 3. Compute sum-of-squares error at outputs.
- 4. Compute the delta terms at the output by differentiation.
- 5. Use this to update the weights connecting the last hidden layer to the outputs.
- 6. Once these are correct, propagate deltas back to the neurons of the hidden layers.
- 7. Compute the delta terms for these neurons.
- 8. Use them to update the next set of weights.
- 9. Repeat until the inputs are reached.

UiO Department of Informatics

#### Algorithm (sequential)

- 1. Apply an input vector and calculate all activations, a and u
- 2. Evaluate deltas for all output units:

$$\Delta_i = (d_i - y_i)g'(a_i)$$

3. Propagate deltas backwards to hidden layer deltas:

$$\delta_i = g'(u_i) \sum_k \Delta_k w_{ki}$$

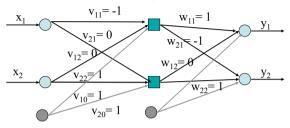
4. Update weights:

$$v_{ij} \leftarrow v_{ij} + \eta \delta_i x_j$$

$$w_{ij} \leftarrow w_{ij} + \eta \Delta_i z_j$$

## **Example: Backpropagation**

Once weight changes are computed for all units, weights are updated at the same time (bias included as weights here). An example:

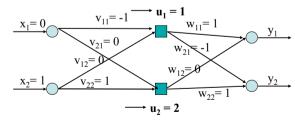


Use identity activation function (ie g(a) = a) for simplicity of example

UiO Department of Informatics
University of Oslo

#### **Example: Backpropagation**

Forward pass. Calculate 1st layer activations:



$$u_1 = -1x0 + 0x1 + 1 = 1$$

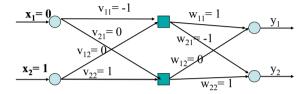
$$u_2 = 0x0 + 1x1 + 1 = 2$$

UiO Department of Informatics

## **Example: Backpropagation**

All biases set to 1. Will not draw them for clarity.

Learning rate h = 0.1

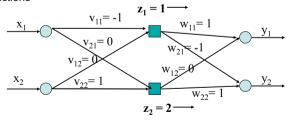


Have input [0 1] with target [1 0].

UiO : Department of Informatics
University of Oslo

## **Example: Backpropagation**

Calculate first layer outputs by passing activations thru activation functions

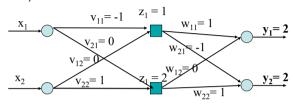


$$z_1 = g(u_1) = 1$$

$$z_2 = g(u_2) = 2$$

## **Example: Backpropagation**

Calculate 2<sup>nd</sup> layer outputs (weighted sum through activation functions):



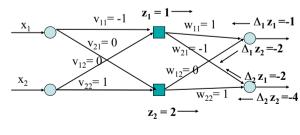
$$y_1 = a_1 = 1x1 + 0x2 + 1 = 2$$

$$y_2 = a_2 = -1x1 + 1x2 + 1 = 2$$

UiO : Department of Informatics

# **Example: Backpropagation**

Calculate weight changes for 1st layer (cf perceptron learning):



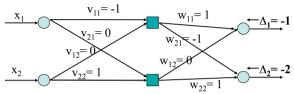
$$w_{ij} \leftarrow w_{ij} + \eta \Delta_i z_j$$

UiO: Department of Informatics

## **Example: Backpropagation**

Backward pass:

$$\Delta_i = (d_i - y_i)g'(a_i)$$



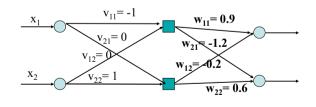
Target =[1, 0] so 
$$d_1 = 1$$
 and  $d_2 = 0$ . So:

$$\Delta_1 = (d_1 - y_1) = 1 - 2 = -1$$
  
 $\Delta_2 = (d_2 - y_2) = 0 - 2 = -2$ 

UiO Department of Informatics
University of Oslo

# **Example: Backpropagation**

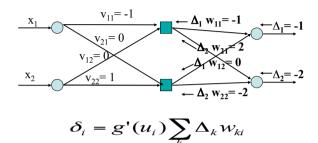
Weight changes will be:



$$w_{ij} \leftarrow w_{ij} + \eta \Delta_i z_j$$

#### **Example: Backpropagation**

Calculate hidden layer deltas:

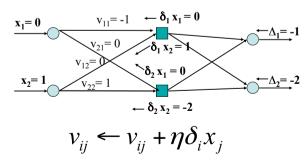


41

UiO Department of Informatics
University of Oslo

## **Example: Backpropagation**

And are multiplied by inputs

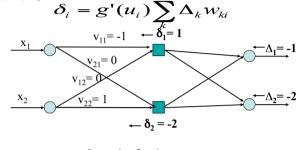


UiO Department of Informatics

University of Oslo

## **Example: Backpropagation**

D's propagate back:

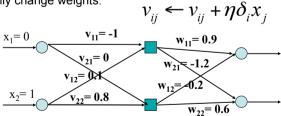


 $\delta_1 = -1 + 2 = 1$  $\delta_2 = 0 - 2 = -2$ 

UiO Department of Informatics
University of Oslo

## **Example: Backpropagation**

Finally change weights:

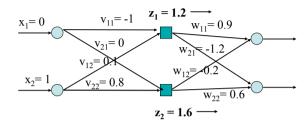


Note that the weights multiplied by the zero input are unchanged as they do not contribute to the error

We have also changed biases (not shown)

## **Example: Backpropagation**

Now go forward again (would normally use a new input vector):



45

UiO Department of Informatics
University of Oslo

#### **Activation Function**

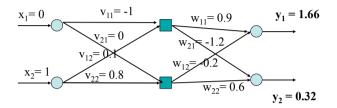
- We need to compute the derivative of activation function *g*
- What do we want in an activation function?
  - Differentiable
  - Nonlinear (more powerful)
  - Bounded range (for numerical stability)

47

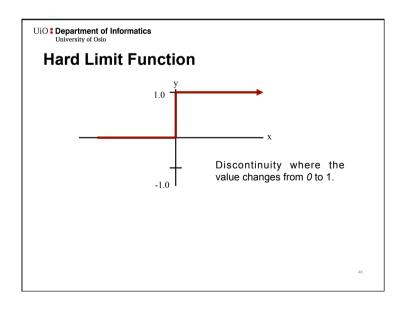
UiO Department of Informatics

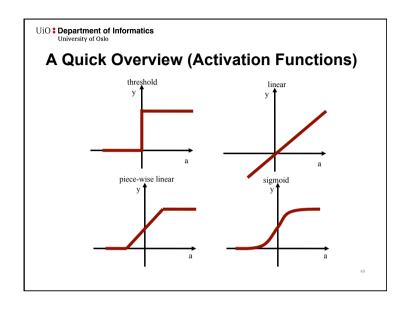
# **Example: Backpropagation**

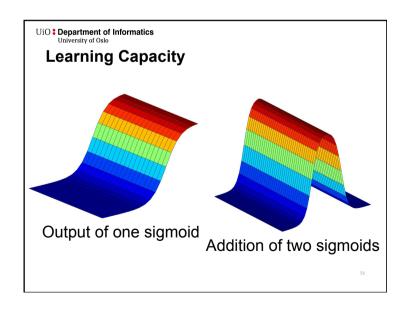
Now go forward again (would normally use a new input vector):

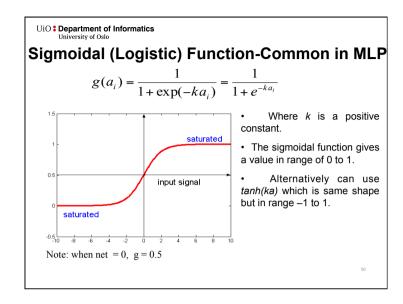


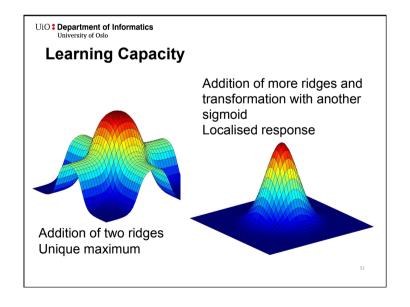
Outputs now closer to target value [1, 0]













## **Network Training**

- · Training set shown repeatedly until stopping criteria are met.
- Usual to randomize order of training patterns presented for each epoch in order to avoid correlation between consecutive training pairs being learnt (order effects).
- · When should the weights be updated?
  - After all inputs seen (batch)
    - · More accurate estimate of gradient
    - Converges to local minimum faster (Jim doesn't agree!)
  - · After each input is seen (sequential)
    - · Simpler to program and most commonly used
    - May escape from local minima (change order or presentation)
- Both ways, need many epochs passes through the whole dataset

UiO Department of Informatics

## **Selecting Initial Weight Values**

- The MLP algorithm suggest that weights are initialized to small random numbers (<± 1), both positive and negative
- Choice of initial weight values is important as this decides starting position in weight space. That is, how far away from global minimum
- Aim is to select weight values which produce midrange function signals (not in only saturated signal, see sigmoid function)
- Select weight values randomly from uniform probability distribution
- Normalise weight values so number of weighted connections per unit produces midrange function signal

UiO : Department of Informatics
University of Oslo

## **Network Topology**

- How many layers?
- · How many neurons per layer?
- No good answers
  - At most 3 weight layers, usually 2
  - Test several different networks
- Possible types of adaptive algorithms (not default in MLP):
  - start from a large network and successively remove some neurons and links until network performance degrades.
  - begin with a small network and introduce new neurons until performance is satisfactory.

#### **Input Normalization**

- Stops the weights from getting unnecessarily large.
- · Treat each data dimension independently.
- Each input variable should be processed so that the mean value is close to zero or at least very small when compared to the standard deviation.

57

UiO : Department of Informatics
University of Oslo

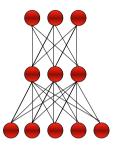
#### Generalisation

- · Aim of neural network learning:
  - Generalise from training examples to all possible inputs.
- The objective of learning is to achieve good *generalization* to new cases; otherwise we would just use a look-up table.
- Under-training is **bad**.
- Over-training is also bad.

UiO Department of Informatics

## **Amount of Training**

- How much training data is needed?
- How many epochs are needed?
- Data:
  - Count the weights
  - Rule of thumb: use 10 times more data than the number of weights



58

UiO Department of Informatics

#### Generalization

 Generalization can be viewed as a mathematical interpolation or regression over a set of training points:



### **Overfitting**

- Overfitting occurs when a model begins to learn the bias of the training data rather than learning to generalize.
- Overfitting generally occurs when a model is excessively complex in relation to the amount of data available.
- A model which overfits the training data will generally have poor predictive performance, as it can exaggerate minor fluctuations in the data.

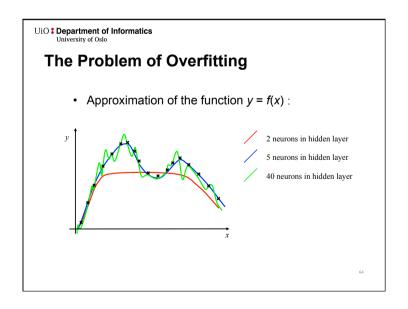
UiO S Department of Informatics
University of Oslo

## **Overfitting**

- The training data contains information about the regularities in the mapping from input to output.
- · Training data also contains bias:
  - There is sampling bias. There will be accidental regularities due to the finite size of the training set.
  - The target values may also be unreliable or noisy.
- When we fit the model, it cannot tell which regularities are relevant and which are caused by sampling error.
  - So it fits both kinds of regularity.
  - If the model is very flexible it can model the sampling error really well. This is not what we want.

UiO \* Department of Informatics
University of Oslo

Overfitting

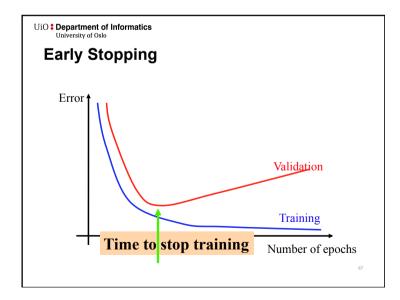


#### The Solution: Cross-Validation

To maximize generalization and avoid overfitting, split data into three sets:

- Training set: Train the model.
- Validation set: Judge the model's generalization ability during training.
- Test set: Judge the model's generalization ability after training.

65



UiO Department of Informatics

#### Validation set

- Data unseen by training algorithm not used for backpropagation.
- Network is not trained on this data, so we can use it to measure generalization ability.
- Goal is to maximize generalization ability, so we should minimize the error on this data set.

66

UiO Department of Informatics

#### **Testing set**

- Data unseen during training and validation.
- Has no influence on when to stop training.
- With early stopping, we've maximized the ability to generalize to the validation set;
- To judge the final result, we should measure its ability to generalize to completely unseen data.

#### k-Fold Cross Validation

- Cross-validation leaves less training data.
- Generalization ability is still only measured on a small set (which will be biased).
- Solution: repeat over many different splits.
  - Divide all data into k sets (or folds).
  - For i = 1...k:
    - Train on data[i], validate on data[i+1], test on rest.
  - Average the results.

69

UiO Department of Informatics
University of Oslo

## Some questions

- · What is overfitting?
- How do we avoid overfitting?
- What do you do if you have limited data and would like to do validation?

