
Biologically inspired computing – Lecture 19 October 2015 
 

Support Vector Machines (Marshall Chpt 8) 
Ensembles (Marshall Chpt 13) 
Dimensionality (Marshall Chpt 6.2) 
 



This lecture 

1. Support vector machines 
– Optimal separation 
– Kernels 

 
2. Ensemble learning 

 
3. Dimensionality reduction 

– Principal component analysis 
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Optimal separation 

 
Linear separators: 

 
Which one is best? 
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Optimal separation 

Choose the one with 
the best margin! 
 
Why? 
• New data near the 

training data points will 
likely be of the same 
class 
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Optimal separation 

Support vectors 
 

• The training data 
defining the margin 
 

• The rest of the data can 
be discarded when we 
are done learning 
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Optimal separation 
• Distance to hyperplane: 
𝒘 ⋅ 𝒙𝑖 − 𝑏 = �> 0 above plane − class A: 𝑦𝑖 = 1

< 0 below plane − class B: 𝑦𝑖 = −1 

 
• If we require that 𝑦𝑖 𝒘 ⋅ 𝒙𝑖 − 𝑏 ≥ 1 then the 

margin is 𝑀 = 1/ 2|𝒘|   
– Maximizing the margin ⇔ minimizing 𝒘 ⋅ 𝒘 
– Exact solution can be found, along with a list of 

support vectors, using quadratic programming 
 

• SVM in 7 minutes (Thales Sehn Körting): 
https://www.youtube.com/watch?v=1NxnPkZM9bc  7 

https://www.youtube.com/watch?v=1NxnPkZM9bc


Nonlinearity 

• How to classify linearly inseparable data? 
– Combine many linear SVMs?  

• Similar to multilayer neural networks 
• But what are the target outputs for the hidden layers? 

 
– A different idea:   

• Map inputs into a higher-dimensional space  
• Hope that they are linearly separable there. 
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Increase dimensionality 

 
𝜑: 𝑥 →  𝑥, 𝑥2  

9 



High dimensionality 

• SVMs typically map to feature spaces of 
much higher dimension 
– With enough dimensions, it becomes very likely 

that the data becomes linearly separable 
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Kernels 

• Finding the hyperplane only requires the dot product 
between vectors, not the actual vectors 
– Calculating 𝜑 𝒙𝑖 ⋅ 𝜑 𝒙𝑗  might be much easier than 𝜑 𝒙𝑖  

 
• 𝑲 𝒙𝑖 ,𝒙𝑗 = 𝜑 𝒙𝑖 ⋅ 𝜑 𝒙𝑗  is called the kernel of 𝜑 

– Common kernels include 
• None: 𝑲 𝒙𝑖 ,𝒙𝑗 = 𝒙𝑖 ⋅ 𝒙𝑗 

• Polynomial: 𝑲 𝒙𝑖 ,𝒙𝑗 = 1 + 𝒙𝑖 ⋅ 𝒙𝑗
𝑝 

• Sigmoid:  𝑲 𝒙𝑖 ,𝒙𝑗 = tanh 𝜅𝒙𝑖 ⋅ 𝒙𝑗 − 𝛿  

• Radial basis function: 𝑲 𝒙𝑖 ,𝒙𝑗 = exp − 𝒙𝑖 − 𝒙𝑗
2/2𝜎2  
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Overfitting 

• Any data set is linearly separable in a feature 
space of sufficient complexity 
 

• We have to be aware of overfitting: Use 
cross-validation and early stopping! 
– If there are noisy outliers (esp. mislabeled 

examples), we need to take stronger measures:  
soft margin. 
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Soft margins 

• Instead of perfectly separating all data, allow 
some misclassifications 

• Introduce slack variables 
– Optimize tradeoff between maximum margin and 

misclassification penalty 
– Tradeoff is balanced by penalty factor C 

• Useful when some error is tolerated, or when 
there are chances of mislabeled training data 
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Applications 

• Classification 
– Multi-class can be achieved via multiple outputs 

• Regression 
• Object detection & recognition 
• Content-based image retrieval 
• Text recognition 
• Speech recognition 
• Biometrics 
• Etc. 
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Considerations 
• Quite powerful (hard to beat by other algorithms) 

– Must beware of overfitting 
• Robust to some noise, if margin is managed properly 
• Fast to apply 
• Difficult to interpret 

 
• How to pick kernel? 

– Start with Gaussian RBF or polynomial 
– May require domain-specific knowledge 
– Can combine kernels for heterogeneous data 
– Consult experts 

 
15 



Ensemble learning 
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Ensemble learning 

• “Decision by committee”   
– Train multiple classifiers to be slightly different 

• An “ensemble” 

– Make classifications based on the combined 
results of all of them  

• Two common types of training differentiation 
– Boosting: change the importance of each training 

vector (data point) 
– Bagging: change the training vectors being used 
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Boosting - AdaBoost 

• Iteratively trains classifiers 
• Each data point is assigned a weight 

– For the first classifier all the weights are equal 
– For the next classifier the weights of the data 

points that were misclassified previously is raised 
– This is continued until the combined error of the 

classifiers trained so far is sufficiently low 
• Dependent on the classifier’s ability to 

consider the weights in their training 
18 



Bagging 

• Makes a random sample of the training data 
for each classifier – bootstrap samples 
– Same size as the training data 
– With replacement 
– Some data points will occur at least twice! 
– Variance will be reduced 
– Each classifier will have different views of the 

training data 
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Combining the classifiers 

• Which classifiers do we listen to when the 
ensemble is in disagreement? 
– Weighted voting (used in boosting) 

• Some classifiers have greater influence than others 

– Majority voting (used in bagging) 
• The most “popular” class is chosen 

– Mixture of experts 
• A meta-machine learning algorithm decides which 

classifiers are most likely to be correct 
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Majority voting 

What to do about the disagreement 
 

– Refuse to classify? 
– Classify only if more than half agree? 
– Return the most common vote? 

 
 
Depends on the application 
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Dimensionality reduction – 
Feature extraction 
Why reduce dimensionality? 
• Reduces time complexity: Less computation 

• Reduces space complexity: Less parameters 

• Saves the cost of acquiring irrelevant features 

• Simpler models are more robust 

• Easier to interpret; simpler explanation 

• Data visualization (structure, groups, outliers, etc.) if 
plotted in 2 or 3 dimensions 

 22 



Principal components 

• The directions along with the most variation 
– Don’t have to correspond to the coordinate axes 
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Principal component 



YouTube introductions 
Application examples (Rasmus Bro): 
• https://www.youtube.com/watch?annotation_id=annotation_963680&fe

ature=iv&src_vid=K-F19DORO1w&v=UUxIXU_Ob6E 
• https://www.youtube.com/watch?v=26YhtSJi1qc 
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Principal component analysis 

• Rotate the axes to lie along the principal 
components 
 

• Remove the axes with the least variation  
– Keep a certain number of dimensions 
– Or: keep a certain percentage of the variation 
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Calculating the principal components 

• Calculate the covariance matrix of the data 
 

• Calculate the eigenvalues and eigenvectors 
of the covariance matrix 
 

• Transform the data with the eigenvectors for 
the largest eigenvalues as the new basis 
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Calculating the covariance matrix 

The variance of feature 𝑖: 

𝜎𝑖2 = 𝜎𝑖𝑖 =
1
𝑁
� 𝑥𝑘𝑘 − 𝜇𝑖 2
𝑁

𝑘=1

 

The covariance between feature 𝑖 and 𝑗: 

𝜎𝑖𝑖 =
1
𝑁
� 𝑥𝑘𝑘 − 𝜇𝑖 𝑥𝑘𝑘 − 𝜇𝑗

𝑁

𝑘=1
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Calculating the covariance matrix 

The covariance matrix is composed of the 
variances and covariances of every 
combination of feature: 

 

𝜎11 𝜎12 ⋯ 𝜎1𝑛
𝜎21 𝜎22 ⋯ 𝜎2𝑛
⋮ ⋮ ⋱ ⋮
𝜎𝑛𝑛 𝜎𝑛𝑛 ⋯ 𝜎𝑛𝑛
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The covariance eigenvectors 

The eigenvectors 𝒗𝑖 and eigenvalues 𝜆𝑖 are the 
𝑛 unique values of matrix 𝐶 such that 

𝜆𝑖𝒗𝑖 = 𝐶𝒗𝑖 
• The eigenvectors of the covariance matrix describe 

the directions of the principal components 
• The eigenvalues tell us how large part of the total 

variation in the data that is accounted for by that 
principal component 
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Notes on PCA 

• PCA is a linear transformation 
– Does not directly help with data that is not linearly 

separable 
– However, may make learning easier because of 

reduced complexity 
• PCA removes some information from the data 

– Might just be noise 
– Might provide helpful nuances that may be of help 

to some classifiers 
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