
Biologically inspired computing – Lecture 19 October 2015

Support Vector Machines (Marshall Chpt 8)
Ensembles (Marshall Chpt 13)
Dimensionality (Marshall Chpt 6.2)

This lecture

1. Support vector machines
– Optimal separation
– Kernels

2. Ensemble learning

3. Dimensionality reduction

– Principal component analysis

3

Optimal separation

Linear separators:

Which one is best?

4

x1

x2

Optimal separation

Choose the one with
the best margin!

Why?
• New data near the

training data points will
likely be of the same
class

5

Margin

x1

x2

Optimal separation

Support vectors

• The training data
defining the margin

• The rest of the data can
be discarded when we
are done learning

6

Support vectors

x1

x2

Optimal separation
• Distance to hyperplane:
𝒘 ⋅ 𝒙𝑖 − 𝑏 = �> 0 above plane − class A: 𝑦𝑖 = 1

< 0 below plane − class B: 𝑦𝑖 = −1

• If we require that 𝑦𝑖 𝒘 ⋅ 𝒙𝑖 − 𝑏 ≥ 1 then the

margin is 𝑀 = 1/ 2|𝒘|
– Maximizing the margin ⇔ minimizing 𝒘 ⋅ 𝒘
– Exact solution can be found, along with a list of

support vectors, using quadratic programming

• SVM in 7 minutes (Thales Sehn Körting):
https://www.youtube.com/watch?v=1NxnPkZM9bc 7

https://www.youtube.com/watch?v=1NxnPkZM9bc

Nonlinearity

• How to classify linearly inseparable data?
– Combine many linear SVMs?

• Similar to multilayer neural networks
• But what are the target outputs for the hidden layers?

– A different idea:

• Map inputs into a higher-dimensional space
• Hope that they are linearly separable there.

8

Increase dimensionality

𝜑: 𝑥 → 𝑥, 𝑥2

9

High dimensionality

• SVMs typically map to feature spaces of
much higher dimension
– With enough dimensions, it becomes very likely

that the data becomes linearly separable

10

Kernels

• Finding the hyperplane only requires the dot product
between vectors, not the actual vectors
– Calculating 𝜑 𝒙𝑖 ⋅ 𝜑 𝒙𝑗 might be much easier than 𝜑 𝒙𝑖

• 𝑲 𝒙𝑖 ,𝒙𝑗 = 𝜑 𝒙𝑖 ⋅ 𝜑 𝒙𝑗 is called the kernel of 𝜑

– Common kernels include
• None: 𝑲 𝒙𝑖 ,𝒙𝑗 = 𝒙𝑖 ⋅ 𝒙𝑗

• Polynomial: 𝑲 𝒙𝑖 ,𝒙𝑗 = 1 + 𝒙𝑖 ⋅ 𝒙𝑗
𝑝

• Sigmoid: 𝑲 𝒙𝑖 ,𝒙𝑗 = tanh 𝜅𝒙𝑖 ⋅ 𝒙𝑗 − 𝛿

• Radial basis function: 𝑲 𝒙𝑖 ,𝒙𝑗 = exp − 𝒙𝑖 − 𝒙𝑗
2/2𝜎2

11

Overfitting

• Any data set is linearly separable in a feature
space of sufficient complexity

• We have to be aware of overfitting: Use
cross-validation and early stopping!
– If there are noisy outliers (esp. mislabeled

examples), we need to take stronger measures:
soft margin.

12

Soft margins

• Instead of perfectly separating all data, allow
some misclassifications

• Introduce slack variables
– Optimize tradeoff between maximum margin and

misclassification penalty
– Tradeoff is balanced by penalty factor C

• Useful when some error is tolerated, or when
there are chances of mislabeled training data

13

Applications

• Classification
– Multi-class can be achieved via multiple outputs

• Regression
• Object detection & recognition
• Content-based image retrieval
• Text recognition
• Speech recognition
• Biometrics
• Etc.

14

Considerations
• Quite powerful (hard to beat by other algorithms)

– Must beware of overfitting
• Robust to some noise, if margin is managed properly
• Fast to apply
• Difficult to interpret

• How to pick kernel?

– Start with Gaussian RBF or polynomial
– May require domain-specific knowledge
– Can combine kernels for heterogeneous data
– Consult experts

15

Ensemble learning

16

http://www.google.no/url?sa=i&rct=j&q=&esrc=s&frm=1&source=images&cd=&ved=0CAcQjRxqFQoTCOf-_6qyzMgCFcqJLAodP6oDtg&url=http://picturespider.com/i-ensemble-learning.php&psig=AFQjCNEvEYyWudtp-t1DT4e0WPN80Wyxcg&ust=1445270501232682

Ensemble learning

• “Decision by committee”
– Train multiple classifiers to be slightly different

• An “ensemble”

– Make classifications based on the combined
results of all of them

• Two common types of training differentiation
– Boosting: change the importance of each training

vector (data point)
– Bagging: change the training vectors being used

17

Boosting - AdaBoost

• Iteratively trains classifiers
• Each data point is assigned a weight

– For the first classifier all the weights are equal
– For the next classifier the weights of the data

points that were misclassified previously is raised
– This is continued until the combined error of the

classifiers trained so far is sufficiently low
• Dependent on the classifier’s ability to

consider the weights in their training
18

Bagging

• Makes a random sample of the training data
for each classifier – bootstrap samples
– Same size as the training data
– With replacement
– Some data points will occur at least twice!
– Variance will be reduced
– Each classifier will have different views of the

training data

19

Combining the classifiers

• Which classifiers do we listen to when the
ensemble is in disagreement?
– Weighted voting (used in boosting)

• Some classifiers have greater influence than others

– Majority voting (used in bagging)
• The most “popular” class is chosen

– Mixture of experts
• A meta-machine learning algorithm decides which

classifiers are most likely to be correct

20

Majority voting

What to do about the disagreement

– Refuse to classify?
– Classify only if more than half agree?
– Return the most common vote?

Depends on the application

21

Dimensionality reduction –
Feature extraction
Why reduce dimensionality?
• Reduces time complexity: Less computation

• Reduces space complexity: Less parameters

• Saves the cost of acquiring irrelevant features

• Simpler models are more robust

• Easier to interpret; simpler explanation

• Data visualization (structure, groups, outliers, etc.) if
plotted in 2 or 3 dimensions

 22

Principal components

• The directions along with the most variation
– Don’t have to correspond to the coordinate axes

23

Principal component

YouTube introductions
Application examples (Rasmus Bro):
• https://www.youtube.com/watch?annotation_id=annotation_963680&fe

ature=iv&src_vid=K-F19DORO1w&v=UUxIXU_Ob6E
• https://www.youtube.com/watch?v=26YhtSJi1qc

24

https://www.youtube.com/watch?annotation_id=annotation_963680&feature=iv&src_vid=K-F19DORO1w&v=UUxIXU_Ob6E
https://www.youtube.com/watch?annotation_id=annotation_963680&feature=iv&src_vid=K-F19DORO1w&v=UUxIXU_Ob6E
https://www.youtube.com/watch?v=26YhtSJi1qc

Principal component analysis

• Rotate the axes to lie along the principal
components

• Remove the axes with the least variation
– Keep a certain number of dimensions
– Or: keep a certain percentage of the variation

25

Calculating the principal components

• Calculate the covariance matrix of the data

• Calculate the eigenvalues and eigenvectors
of the covariance matrix

• Transform the data with the eigenvectors for
the largest eigenvalues as the new basis

26

Calculating the covariance matrix

The variance of feature 𝑖:

𝜎𝑖2 = 𝜎𝑖𝑖 =
1
𝑁
� 𝑥𝑘𝑘 − 𝜇𝑖 2
𝑁

𝑘=1

The covariance between feature 𝑖 and 𝑗:

𝜎𝑖𝑖 =
1
𝑁
� 𝑥𝑘𝑘 − 𝜇𝑖 𝑥𝑘𝑘 − 𝜇𝑗

𝑁

𝑘=1

27

Calculating the covariance matrix

The covariance matrix is composed of the
variances and covariances of every
combination of feature:

𝜎11 𝜎12 ⋯ 𝜎1𝑛
𝜎21 𝜎22 ⋯ 𝜎2𝑛
⋮ ⋮ ⋱ ⋮
𝜎𝑛𝑛 𝜎𝑛𝑛 ⋯ 𝜎𝑛𝑛

28

The covariance eigenvectors

The eigenvectors 𝒗𝑖 and eigenvalues 𝜆𝑖 are the
𝑛 unique values of matrix 𝐶 such that

𝜆𝑖𝒗𝑖 = 𝐶𝒗𝑖
• The eigenvectors of the covariance matrix describe

the directions of the principal components
• The eigenvalues tell us how large part of the total

variation in the data that is accounted for by that
principal component

29

Notes on PCA

• PCA is a linear transformation
– Does not directly help with data that is not linearly

separable
– However, may make learning easier because of

reduced complexity
• PCA removes some information from the data

– Might just be noise
– Might provide helpful nuances that may be of help

to some classifiers

30

	Biologically inspired computing – Lecture 19 October 2015�
	This lecture
	Optimal separation
	Optimal separation
	Optimal separation
	Optimal separation
	Nonlinearity
	Increase dimensionality
	High dimensionality
	Kernels
	Overfitting
	Soft margins
	Applications
	Considerations
	Ensemble learning
	Ensemble learning
	Boosting - AdaBoost
	Bagging
	Combining the classifiers
	Majority voting
	Dimensionality reduction –�Feature extraction
	Principal components
	YouTube introductions
	Principal component analysis
	Calculating the principal components
	Calculating the covariance matrix
	Calculating the covariance matrix
	The covariance eigenvectors
	Notes on PCA

