reinforcement learning

pavlov's dog

nervous system digestion

robot flipping pancakes

Robot Motor Skill
Coordination with EM-based
Reinforcement Learning

Petar Kormushev, Sylvain Calinon, and Darwin G. Caldwell

Italian Institute of Technology

http://cs.stanford.edu/groups/littledog/

another example

- a child learning to walk:
 - tries out many different strategies
 - some do not work (falling), some seem to work (staying up longer and longer)
 - the ones that do not work are discarded
 - the ones that work are tried again and again until perfected or replaced by better strategies

hovering... inverted!

Inverted autonomous helicopter flight via reinforcement learning, Andrew Y. Ng, Adam Coates, Mark Diel, Varun Ganapathi, Jamie Schulte, Ben Tse, Eric Berger and Eric Liang. In *International Symposium on Experimental Robotics*, 2004.

URL: http://heli.stanford.edu/

the problem

toy problem

state and action spaces

- size of these spaces can be quite large
- specifying the spaces is crucial in designing a good learning agent

size of state space = $100 \times 100 \times 100 \times 100 \times 100$

can quantise state space differently

size of state space = $2 \times 2 \times 2 \times 2 \times 2$

in the toy problem? 9

reward system should tell the agent:

what to achieve

rather than how to achieve

an action based on

expected "long term"

reward (cumulative
reward in the long run)

reward (cumulative reward in the long run)

episodic

(there is an **end**)

agent taking finite (say 5) steps till the end...

should act based on the average of the following

$$R_0 = r_1 + r_2 + r_3 + r_4 + r_5$$

continual

(there is no **end**)

agent can continue acting for **infinite steps in time...**

should **discount** future rewards and act based on the **average of the following**

$$R_0 = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \gamma^4 r_5 + \dots$$

discount

future reward is probably more uncertain than immediate reward

shortsighted? Y=0

$$0 \le \gamma \le 1$$

farsighted? Y=1

$$R_0 = r_1 + \gamma r_2 + \gamma^2 r_3 + \gamma^3 r_4 + \gamma^4 r_5 + \dots$$

$$R_0 = \sum_{k=0}^{I} \gamma^k r_{k+1}$$

$$R_t = \sum_{k=0}^{T} \gamma^k r_{t+k+1}$$

but these expected rewards are not known to agent beforehand!

whether they are known or not, the agent has to act somehow!

how to act/action selection?

how to get to know/estimate?

action selection?

Values of each possible action in the current state?

expected reward for

carrying out the action is its Value

but what are these values?

<<expected rewards are not known>> <<actions based on expected rewards>>

these expected rewards E{Rt} are to be estimated by agent whilst acting!

agent maintains values for actions within each state

selects actions using these values based on a "policy"

agent maintains state values

selects actions using these values based on a "policy"

policy?

probability of choosing an action, given a state

$$Q^{\pi}(s,a)$$
 $V^{\pi}(s)$

usual policies

choose **best action**

choose
best action with
probability 1-ε

choose
action with
probability given
by its value

exploration vs. exploitation

policy = multi-armed bandit strategy

Yamaguchi先生, http://en.wikipedia.org/wiki/File:Las Vegas slot machines.jpg

Learning to be different: Heterogeneity and efficiency in distributed smart camera networks, P. R. Lewis, L. Esterle, A. Chandra, B. Rinner, and X. Yao, In Proceedings of the IEEE Conference on Self-Adaptive and Self-Organizing Systems (SASO), IEEE, 2013.

Static, dynamic and adaptive heterogeneity in socio-economic distributed smart camera networks, P. R. Lewis, L. Esterle, A. Chandra, B. Rinner, J. Torresen, and X. Yao, ACM Transactions on Autonomous and Adaptive Systems (TAAS), ACM, 2015.

A/B Testing

<<use currently visible rewards to update values of where you are coming from>>

the current state (or state-action pair) has an estimated value (say zero/random initially),

which can be used together with rt+1 to update value of previous state (or state-action pair)

$$V(s) \leftarrow V(s) + \mu(r + \gamma V(s') - V(s))$$

e.g.

$$Q(s,a) \leftarrow Q(s,a) + \mu(r + \gamma Q(s',a') - Q(s,a))$$

e.g. update a lookup table maintaing expected rewards

$$Q(s,a) \leftarrow Q(s,a) + \mu(r + \gamma Q(s',a') - Q(s,a))$$

let's play with a version of the above update rule:

$$Q(s,a) \leftarrow Q(s,a) + \mu(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

indicates a' to be the action with maximum value in next state s'

let's play with a version of the above update rule:

$$Q(s,a) \leftarrow Q(s,a) + \mu(r + \gamma \max_{a'} Q(s',a') - Q(s,a))$$

our toy problem lookup table

our toy problem lookup table

let's fix $\mu = 0.1$, $\gamma = 0.5$

episode 1 begins...

	0			0			0	
0	1	0	-0.1	2	0	0	3	0
	o 🍱			0			0	
	0			0			0	
0	4	0	0	5	0	0	6	0
	0		13	0			0	
	0			0			0	
0 h	7 iom	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	0			0			0	
	0			0			0	
0	4	0	0	5	0	0	6	0
	0		13	0			0	
	0			0			0	
0 -	7 10m	0 2	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	0			0			0	
	0			0			0	
0	4	0	0	5	0	0	6	0
	0		13	0			0	
	0			0			0	
o 	7 nom	0 C	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	?	•	-1	0			0	
	0			0			0	
0	4	0	0	5	0	0	6	0
	0		13	0			0	
	0			0			0	
o h	7 10m	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	0	0	5	0	0	6	0
	0 🖺		1}	0			0	
	0			0			0	
0 -	7 10m	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	0	0	5	0	0	6	0
	0		13	0			0	
	0			0			0	
0 -	7 10m	0	0	8	0	0	9	0
	0	<u> </u>		0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0		-10	0	
	0			0 -			0	
0	4	?	0	5	0	0	6	0
	0		13	0			0	
	0			0			0	
0 -	7 nome	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	-1	0	5	0	0	6	0
	0		11	0			0	
	0			0			0	
0 	7 nome	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	-1	0	5	0	0	6	0
	0		11	0			0	
	0			0			0	
0 -	7 nome	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	-1	0	5	0	0 -1	6	0
	0		1}		•		0	
	0			0			0	
o -	7 nome	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	-1	0	5	0	0	6	0
	0		1}	-0.1			0	
	0			0			0	
o 	7 nome	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	-1	0	5	0	0	6	0
	0		1}	-0.1			0	
	0			0			0	
o -	7 nome	0	0	8	0	0	9	0
	0			0			0	

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	-1	0	5	0	0	6	0
	0		13	-0.1			0	
	0		_10	0			0	
o 	7 nome	0	?	8	0	0	9	0
0			0			0		

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
0	4	-1	0	5	0	0	6	0
	0		1}	-0.1			0	
	0			0			0	
o 	7 nome	0	1	8	0	0	9	0
0			0			0		

episode 1 ends.

let's work out the next episode, starting at state 4

go WEST and then SOUTH

how does the table change?

	-0.5			0			0	
0	1	0	-0.1	2	0	0	3	0
	-0.1			0			0	
	0			0			0	
-0.5	4	-1	0	5	0	0	6	0
	1			-0.1			0	
	0			0			0	
0	7	0	1	8	0	0	9	0
	0			0			0	

and the next episode, starting at state 3

go WEST -> SOUTH -> WEST -> SOUTH

how does the table change?

	-0.5			0			0	
0	1	0	-0.1	2	0	-0.1	3	0
	-0.1			-1			0	
	0			0			0	
-0.5	4	-1	-0.05	5	0	0	6	0
	1.9			-0.1			0	
	0			0			0	
0	7	0	1	8	0	0	9	0
	0			0			0	

what we just saw was some episodes of Q-learning

value updates based on **optimal policy**: value of **best next action**

off-policy learning

SARSA-learning?

value updates based on used policy: value of the actual next action

on-policy learning

By Andreas Tille (Own work) [GFDL (www.gnu.org/copyleft/fdl.html) or CC-BY-SA-3.0-2.5-2.0-1.0 (www.creaCvecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

mountain car...

pole balancing...

Pole balancing in reality: http://www.youtube.com/watch?v=Lt-KLtkDlh8

human level game control

- pixel input
- 18 joystick/button positions output
- change in game score as feedback
- convolutional net representing Q
- backpropagation for training!

Human-level control through deep reinforcement learning,
Mnih et. al., Nature 518, Feb 2015
http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

neural network

convolution, weight sharing, and pooling

backpropagation?

What is the **target** against which to minimise error?

$$\mathcal{L}(w) = \mathbb{E}\left[\left(\underbrace{r + \gamma \, \max_{a'} \, Q(s', a', w)}_{\text{target}} - Q(s, a, w)\right)^2\right]$$

$$\frac{\partial \mathcal{L}(w)}{\partial w} = \mathbb{E}\left[\left(r + \gamma \max_{a'} Q(s', a', w) - Q(s, a, w)\right) \frac{\partial Q(s, a, w)}{\partial w}\right]$$

experience replay

save current transition (s, a, r, s') in memory every time step

randomly sample a set of (s, a, r, s') from memory for training Q network (instead of learning from current state transition) every step

= i.i.d + learn from the past

freezing target Q

moving target => **oscillations**

freeze

$$\mathcal{L}(w) = \mathbb{E}\left[\left(\underbrace{r + \gamma \, \max_{a'} \, Q(s', a', w)}_{target} - Q(s, a, w)\right)^2\right]$$

stabilise learning by **fixing target**, moving it every now and then

what does a deep neural network do?

corners & edge/color conjunctions

reverse projections of neuron outputs in pixel space

Object parts (dog face & bird legs)

Entire object with pose variation (dogs)

compositional features

compositional problem solving

multiplication (circuit design)

- composed of adding numbers
- < composed of adding bits</p>

```
output: x.y
——multiply——
—adding nums——
adding bits——
input: x and y
```

human knowledge organisation

find roots of a linear expression

- <— composed of setting expression to zero and solving linear equations
- <— composed of rearranging terms</p>

deep layers make representation of knowledge and processes happen with **fewer neurons**!

code for you to play with...

tabular approaches:

http://jamh-web.appspot.com/

download.htm#Reinforcement_Learning:

deep learning approach:

Environment: http://www.arcadelearningenvironment.org/

Code: https://sites.google.com/a/deepmind.com/dqn/

please do e-mail for questions, and if you want to work on reinforcement learning research projects:

arjun.chandra@gmail.com / chandra@ifi.uio.no

coyote learning what not to do...

