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P marks the programming exercises, we strongly recommend using the python programming language for these.
Exercises may be added/changed after publishing.

1 Simple search algorithms

Given the function f(x) = −x4 + 2x3 + 2x2 − x:

1.a Derivative
What is its derivative f ′(x) ?

Answer:
f ′(x) = −4x3 + 6x2 + 4x− 1

1.b PlottingP
Plot the function, and its gradient(derivative) from x = −2 to x = 3. Use python, wolfram alpha or another
plotting tool of your choice.

Plot:
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Figure 1: f(x) and it’s derivative.

Source code (Python 3):

#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
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def f(x):
return -x**4 + 2 * x**3 + 2 * x**2 - x

def df(x):
return -4 * x**3 + 6 * x**2 + 4 * x - 1

x = np.linspace(-2, 3, 100)
plt.plot(x,f(x))
plt.plot(x,df(x))
plt.savefig("w1e1b.eps", format="eps")
plt.show()

1.c Gradient AscentP
Maximize using gradient ascent. You can try step size 0.1 and start somewhere in the range [-2, 3]. How does
the choice of starting point and step size affect the algorithm’s performance? Is there a starting point where the
algorithm would not even be able to find a local maximum?

Answer:
Both starting position and step size affects where the algorithm ends:

• Starting Position

– Left side: Should converge on left maximum

– Center: Stops immediately, gradient is zero.

– Right side: Should converge on right maximum

• Step Size

– Too low: Converges slowly (poor performance)

– Too high: Overshoot, bounce over solutions. Doesn’t converge, might not terminate.

Plot:
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Figure 2: Result of gradient ascent
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Source code (Python 3):

#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
import random

def f(x):
return -x**4 + 2 * x**3 + 2 * x**2 - x

def df(x):
return -4 * x**3 + 6 * x**2 + 4 * x - 1

def gradient_ascent(gamma, x, precision):
dx = gamma * df(x)
while abs(dx) > precision:

plt.plot(x,f(x), color="red", marker="s", markersize=3)
x = x + dx
dx = gamma * df(x)

return x,f(x)

def plot_gradient_ascent(start,stop,steps):
x = np.linspace(start, stop, steps)

plt.plot(x,f(x))
randx = random.uniform(start,stop)
sol = gradient_ascent(gamma=0.1, x=randx, precision=0.0001)
plt.plot(sol[0],sol[1], color="yellow", marker="*", markersize=16)
plt.savefig("eps/w1e1c.eps", format="eps")
plt.show()

if __name__ == "__main__":
plot_gradient_ascent(-2,3,100)

1.d Exhaustive SearchP
Assume that we are only interested in maxima of f(x) where −2 ≤ x ≤ 3, and x increases in steps of length 0.5.
(∆x = 0.5). Perform an exhaustive search to maximize f(x) and plot the result.

Plot:
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Figure 3: Result of exhaustive search

Source code (Python 3):

#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
import random

def f(x):
return -x**4 + 2 * x**3 + 2 * x**2 - x

def exhaustive(function, start, stop, step):
x = start
best = (x, function(x))
while x < stop:

y = function(x)
if y > best[1]:

best = (x,y)
plt.plot(x,y, color="red", marker="s", markersize=3)
x += step

return best

def plot_exhaustive(function,start,stop,steps):
x = np.linspace(start, stop, steps)

plt.plot(x,function(x))
randx = random.uniform(start,stop)
sol = exhaustive(function, start, stop, step=0.5)
plt.plot(sol[0],sol[1], color="yellow", marker="*", markersize=16)
plt.savefig("eps/w1e1d.eps", format="eps")
plt.show()

if __name__ == "__main__":
plot_exhaustive(f,-2,3,100)
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1.e Greedy Search and Hill Climbing
In what way would greedy search and hill climbing differ for the maximization problem in Problem 1.c? Can you
identify a starting position where the two algorithms might give different results?

Answer:
Greedy search will check all neighbors and always go in most promising direction. Hill climber will randomly
find a decent neighbor and walk there. If both algorithms started in center ( x = 0.5 ), greedy search always go
right, while hill climber could go right and left ( 50/50 ) as both are up.

1.f Possible improvements
Gradient ascent, greedy search and hill climbing are quite similar, and are all based almost exclusively on ex-
ploitation. Can you think of any additions to these algorithms in order to do more exploration?

Answer:
Run the algorithm several times with random starting positions, this will explore the solution space and find
several local optima. Another option is to add more random movement to either algorithm. This can be done
after a solution is found, or at a probability while searching. Could also do backtrack + random jump after a
solution is found.

1.g Exhaustive search vs. simulated annealing
Which algorithm do you think is the most efficient at maximizing f(x) under the conditions in Problem 1.d:
exhaustive search or simulated annealing? Explain.

Answer:
Exhaustive search is better for this case. It takes few iterations to go through the one dimensional solution space.
For problems in higher dimensions or more complex functions with smaller step size exhaustive search becomes
impractical and simulated annealing will outperform.

Contact and Github

Corrections of grammar, language, notation or suggestions for improving this material are appreciated. E-mail
me at olehelg@uio.no or use GitHub to submit an issue or create a pull request. The GitHub repository
contains all source code for assignments, exercises, solutions, examples etc. As many people have been involved
with writing and updating the course material, they are not all listed as authors here. For a more complete list
of authors and contributors see the README.
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