
INF3490/INF4490 Exercise Solutions - Week 2

Ole Herman S. Elgesem

October 3, 2016

P marks the programming exercises, we strongly recommend using the python programming language for these.
Exercises may be added/changed after publishing.

1 Representations

Recall all the representations that have been presented. Which mutation and recombination operators are com-
patible with which representations?

Answer:

• Binary representation

– Bit-flip mutation

– N-point and uniform crossover

• Integer representation

– Random reset and creep mutation

– N-point and uniform crossover

• Cardinal/enumerated/symbolic representations

– Random reset mutation

– N-point and uniform crossover

• Real-valued/Continuous representation

– Uniform and Gaussian mutation

– N-point, discrete uniform and arithmetic crossover

• Permutation representation

– Swap, insert, scramble and invert mutation

– Partially mapped, order, cycle and edge crossover

• Tree representation

– Mutation by random replacement

– Subtree swap mutation

2 Bit flip mutation

Given the binary chromosome with length 4, calculate the probability that no bits, one bit and more than one
bit will be flipped in a bit-flip mutation with pm = 1

4 .

Answer:
Probability of no mutation:

P (0) =
3

4

3

4

3

4

3

4
=

34

44
≈ 32%

1

Binomial probability:

P =

(
n

k

)
pk(1− p)n−k (1)

Binomial coefficient: (
n

k

)
=

n!

k!(n− k)!
(2)

Where n is number of events, k is number of occurences wanted and p is the probability of a single event.

In this case we want exactly 1 mutation in 4 events, and the probability is 0.25:

n = 4

k = 1

p = pm = 0.25

P (1) =

(
4

1

)
0.251(1− 0.25)4−1

P (1) =
4!

1!(4− 1)!
0.251(1− 0.25)4−1

P (1) =
4 ∗ 3 ∗ 2
3 ∗ 2

0.251(0.75)3

P (1) = 4 ∗ 0.251(0.75)3

P (1) = 0.753 ≈ 42%

This makes intuitive sense and we could also arrive at this result without using the general formula. For example,
the probability of mutation (yes,no,no,no) is:

P (1) =
1

4

3

4

3

4

3

4

P (1) = 0.25 ∗ 0.753

And there are 4 variants, 4 places where the mutation can happen, so:

P (1) = 4 ∗ (0.25 ∗ 0.753)
P (1) = 0.753 ≈ 42%

Finally, the probability of more than one mutation:

P (2+) = 1− P (0)− P (1)

P (2+) ≈ 1− 32%− 42%

P (2+) ≈ 26%

3 CrossoverP
Given the sequences (2,4,7,1,3,6,8,9,5) and (5,9,8,6,2,4,1,3,7). Implement these algorithms to create a new pair
of solutions:

a. Partially mapped crossover (PMX).

b. Order crossover.

c. Cycle crossover.

Answer:

2

https://en.wikipedia.org/wiki/Binomial_distribution
https://en.wikipedia.org/wiki/Binomial_coefficient

3.a Partially mapped crossover

3.a.1 Output

Parents:
[2, 4, 7, 1, 3, 6, 8, 9, 5]
[5, 9, 8, 6, 2, 4, 1, 3, 7]
Children:
[5, 9, 7, 1, 3, 6, 4, 2, 8]
[3, 1, 8, 6, 2, 4, 7, 9, 5]

3.a.2 Source code

#!/usr/bin/env python3
import random

def pmx(a,b, start, stop):
child = [None]*len(a)

Copy a slice from first parent:
child[start:stop] = a[start:stop]

Map the same slice in parent b to child using indices from parent a:
for ind,x in enumerate(b[start:stop]):

ind += start
if x not in child:

while child[ind] != None:
ind = b.index(a[ind])

child[ind] = x

Copy over the rest from parent b
for ind,x in enumerate(child):

if x == None:
child[ind] = b[ind]

return child

def pmx_pair(a,b):
half = len(a) // 2
start = random.randint(0, len(a)-half)
stop = start + half
return pmx(a,b,start,stop) , pmx(b,a,start,stop)

if __name__ == "__main__":
a = [2,4,7,1,3,6,8,9,5]
b = [5,9,8,6,2,4,1,3,7]
c,d = pmx_pair(a,b)
print("Parents:")
print(a)
print(b)
print("Children:")
print(c)
print(d)

3

3.b Order Crossover

3.b.1 Output

Parents:
[2, 4, 7, 1, 3, 6, 8, 9, 5]
[5, 9, 8, 6, 2, 4, 1, 3, 7]
Children:
[9, 2, 4, 1, 3, 6, 8, 7, 5]
[7, 3, 8, 6, 2, 4, 1, 9, 5]

3.b.2 Source code

#!/usr/bin/env python3
import random

def order_xover(a,b, start, stop):
child = [None]*len(a)

Copy a slice from first parent:
child[start:stop] = a[start:stop]

Fill using order from second parent:
b_ind = stop
c_ind = stop
l = len(a)
while None in child:

if b[b_ind % l] not in child:
child[c_ind % l] = b[b_ind % l]
c_ind += 1

b_ind += 1
return child

def order_xover_pair(a,b):
half = len(a) // 2
start = random.randint(0, len(a)-half)
stop = start + half
return order_xover(a,b,start,stop) , order_xover(b,a,start,stop)

if __name__ == "__main__":
a = [2,4,7,1,3,6,8,9,5]
b = [5,9,8,6,2,4,1,3,7]
c,d = order_xover_pair(a,b)
print("Parents:")
print(a)
print(b)
print("Children:")
print(c)
print(d)

3.c Cycle Crossover

3.c.1 Output

Parents:
[2, 4, 7, 1, 3, 6, 8, 9, 5]
[5, 9, 8, 6, 2, 4, 1, 3, 7]

4

Children:
[2, 4, 7, 1, 3, 6, 8, 9, 5]
[5, 9, 8, 6, 2, 4, 1, 3, 7]

(These 2 parents have just one cycle, so the child will be the same as parent 1).

3.c.2 Source code

#!/usr/bin/env python3
import random

def cycle_xover(a,b):
child = [None]*len(a)
while None in child:

ind = child.index(None)
indices = []
values = []
while ind not in indices:

val = a[ind]
indices.append(ind)
values.append(val)
ind = a.index(b[ind])

for ind,val in zip(indices, values):
child[ind] = val

a,b = b,a
return child

def cycle_xover_pair(a,b):
return cycle_xover(a,b) , cycle_xover(b,a)

if __name__ == "__main__":
a = [2,4,7,1,3,6,8,9,5]
b = [5,9,8,6,2,4,1,3,7]
c,d = cycle_xover_pair(a,b)
print("Parents:")
print(a)
print(b)
print("Children:")
print(c)
print(d)

Contact and Github

Corrections of grammar, language, notation or suggestions for improving this material are appreciated. E-mail
me at olehelg@uio.no or use GitHub to submit an issue or create a pull request. The GitHub repository
contains all source code for assignments, exercises, solutions, examples etc. As many people have been involved
with writing and updating the course material, they are not all listed as authors here. For a more complete list
of authors and contributors see the README.

5

mailto:olehelg@uio.no
https://github.com/olehermanse/INF3490-AI_Machine_Learning
https://github.com/olehermanse/INF3490-AI_Machine_Learning
https://github.com/olehermanse/INF3490-AI_Machine_Learning/blob/master/README.md

	Representations
	Bit flip mutation
	Crossover
	Partially mapped crossover
	Output
	Source code

	Order Crossover
	Output
	Source code

	Cycle Crossover
	Output
	Source code

