
scaling	up	RL	with	
func1on	approxima1on



Human-level	control	through	deep	reinforcement	learning,		
Mnih	et.	al.,	Nature	518,	Feb	2015	
hFp://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

•pixel	input	

•18	joys-ck/bu3on	posi-ons	output	

•change	in	game	score	as	feedback	

• convolu-onal	net	represen-ng	Q	

•backpropaga-on	for	training!

human	level	game	control

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html


neural	network



convolu1on,	weight	
sharing,	and	pooling

pixel

shared	feature	detector	/	kernel	/	filter	w

pooled

feature	map

max(window)

fewer	parameters	due		
to	sharing	and	pooling!



reverse	projec-ons	of	neuron	outputs	in	pixel	space

what	does	a	deep	neural	network	do?







composi1onal	features	
composi1onal	problem	

solving	
mul1plica1on	(circuit	design)	

<—	composed	of	adding	numbers		

<—	composed	of	adding	bits	

					output:	x.y				
	—————multiply—————	
	———adding	nums————	
	———adding	bits————	
			input:	x	and	y			

human	knowledge	
organisa1on	

find	roots	of	a	linear	expression	

<—	composed	of	seWng	expression	to	zero	
and	solving	linear	equa1ons		

<—	composed	of	rearranging	terms	

								output:	x	=	-2										
—————(find	roots	of	x+2)———————	
—————(set	x+2=0)—(solve)———————	
———————————————(rearrange)—————	
					input:	x,	+,	2,	=,	0							

deep	layers	make	representa1on	of		
knowledge	and	processes	happen	with	fewer	neurons!



backpropaga1on?
What	is	the	target	against	which	to	minimise	error?



prac1cally	speaking…	
minimise	MSE	by	SGD



experience	replay

save	current	transi-on	
(s,	a,	r,	s’)	in	memory	

every	1me	step

randomly	sample	a	set	of		
(s,	a,	r,	s’)	from	memory	
for	training	Q	network	

(instead	of	learning	from	
current	state	transi-on)		

every	step
=	i.i.d	+	learn	from	the	past	

at

st

st+1

rt+1



freezing	target	Q
moving	target	=>	oscilla-ons

stabilise	learning	by	fixing	target,		
moving	it	every	now	and	then

freeze



double	DQN

evalua1on		
of	target	ac1on

selec1on	of		
target	ac1on

max	Q
a’

Deep	Reinforcement	Learning	with	Double	Q-learning	
van	Hasselt	et.	al.,	AAAI	2016	
hFps://arxiv.org/pdf/1509.06461v3.pdf

https://arxiv.org/pdf/1509.06461v3.pdf


priori1sed		
experience	replay

sample	
(s,	a,	r,	s’)	from	memory	

based	on	surprise

Priori1sed	Experience	Replay	
Schaul	et.	al.,	ICLR	2016	
hFps://arxiv.org/pdf/1511.05952v4.pdf

https://arxiv.org/pdf/1511.05952v4.pdf


Combining	decoupling	(double),		
priori1sed	replay,	and	duelling	helps!

duelling	architecture

Q(s,	a)	=	V(s,	u)	+	A	(s,	a,	v)

u

v

Q

Q

Dueling	Network	Architectures	for	Deep	RL	
Wang	et.	al.,	ICML	2016	
hFps://arxiv.org/pdf/1511.06581v3.pdf

https://arxiv.org/pdf/1511.06581v3.pdf


however	training	is	

SLOW



making	deep	RL	faster	
and	wilder	(more	

applicable	in	the	real	
world)!



data	efficient	explora1on?

parallelism?

transfer	learning?

making	use	of	a	model?



Q Q Q Q Q

Q Q Q Q Q

Q Qt

Qt Qt Qt Qt Qt

Qt Qt Qt Qt Qt

shared	
params	
for	Q	and		
target	Q

parallel	learners	
geWng	individual		

experiences

lock-free	
param		
updates

Asynchronous	Methods	for	Deep	Reinforcement	Learning,	
Mnih	et.	al.,	ICML	2016	
hFp://jmlr.org/proceedings/papers/v48/mniha16.pdf

http://jmlr.org/proceedings/papers/v48/mniha16.pdf


code	for	you	to	play	with...

Telenor’s	own	implementa1on	of	asynchronous	deep	RL:	
hFps://github.com/traai/async-deep-rl

hFps://openrl.slack.comLet’s	keep	the	conversa1on	going:	

https://github.com/traai/async-deep-rl
https://gym.openai.com/

