scaling up RL with
function approximation

human level game control

Ef EEESEEES a3 =

: _
® pixelinput

® 18 joystick/button positions output I

® change in game score as feedback

- :
® backpropagation for training!

® convolutional net representing Q

Human-level control through deep reinforcement learning,
Mnih et. al., Nature 518, Feb 2015

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

No input

/GESEERR0REBEERERE
& » -> N7 ++ +R+Q+Q+0 R+
ZJ 3 LY K Ed K4 B B4 1™

Fully connected

Fully connected

QQO00nn DDDDDDD/_HD\DDDDDDD QQO000s

Convolution

=
S
>
e
)
C
(O
S
-
)
C

Convolution

convolution, weight
sharing, and pooling

fewer parameters due
to sharing and pooling!

what does a deep neural network do?

\ | B F
"""jj'"‘m === 0
ZME
B Y11y
e

“i L Dppl

—

-
B

47
/4

-
HmA\h BR Y

Tl

corners & edge/color Conjunctlons

reverse projections of neuron outputs in pixel space

N
D
=
X
Q
©
£
)

Object par
(dog face & bird legs) (dogs)

compositional features

compositional problem human knowledge
solving organisation
multiplication (circuit design) find roots of a linear expression
<— composed of adding numbers <— composed of setting expression to zero

<— composed of adding bits and solving linear equations

output: Xx.y <— composed of rearranging terms

multiply
——adding nums

output: x =
(find roots of x+2)
——adding bits (set x+2=0)—(solve)

input: x and y

(rearrange)
input: x, +, 2,

deep layers make representation of

knowledge and processes happen with fewer neurons!

backpropagation?

What is the target against which to minimise error?

2
L(w)=E {(r + 7y max Q(s',a,w) — Q(s, a, w)) }
———

target

OL(w) _

BW BW

E {(r +7 max Q(s',a', w) — Q(s, a, w)) 0Q(s, a, W)]

practically speaking...
minimise MSE by SGD

2
(r + 7 max Q(s',a',w) — Q(s, a, w))

d

experience replay

randomly sample a set of
(s,a, r,s’) from memory
for training Q network
(instead of learning from
current state transition)
every step

save current transition
(s,a, r,s’)in memory
every time step

=i.i.d + learn from the past

freezing target Q

moving target => oscillations

freeze

2
(r + v max Q(s',a’,w™) — Q(s, a,w))

a/

stabilise learning by ﬁXing ta rgEt,

moving it every now and then

double DQN

selection of
target action

evaluation
of target action

2
(r + vQ(s’,argmax Q(s',a’,w),w™) — Q(s, a, w)>

d

Deep Reinforcement Learning with Double Q-learning
van Hasselt et. al., AAAI 2016
https://arxiv.org/pdf/1509.06461v3.pdf

https://arxiv.org/pdf/1509.06461v3.pdf

prioritised
experience replay

sample
(s,a, r,s’) from memory
based on surprise

r+v max Q(s',a’,w~) — Q(s, a, w)

d

Prioritised Experience Replay
Schaul et. al., ICLR 2016
https://arxiv.org/pdf/1511.05952v4.pdf

https://arxiv.org/pdf/1511.05952v4.pdf

duelling architecture

ADVANTAGE

0003} - 0003KF
185198 105198
stV 50N st V50N

ADVANTAGE

Q(s, a) = V(s, u) + A (s, a, v)

/= o\ / .\

. 0006} - 0006
1RE193 1B%E193
s ViSioN s IVSI0N

Dueling Network Architectures for Deep RL . .
Wang et. al., ICML 2016 Combining decoupling (double),

https://arxiv.org/pdf/1511.06581v3.pdf prioritised replay, and duelling helps!

https://arxiv.org/pdf/1511.06581v3.pdf

however training is

SLOW

making deep RL faster
and wilder (more
applicable in the real
world)!

data efficient exploration?
making use of a model?

transfer learning?

parallelism?

EICHEREEINEE
getting individual
experiences

eesrsr DR $ 880 oswousd 2 EEEEEEEEEEEEE 00 cosom

shared
params
for Q and
target Q

............

lock-free
param
updates

Asynchronous Methods for Deep Reinforcement Learning,
Mnih et. al., ICML 2016
http://imlr.org/proceedings/papers/v48/mnihal6.pdf

http://jmlr.org/proceedings/papers/v48/mniha16.pdf

code for you to play with...

Telenor’s own implementation of asynchronous deep RL:
https://github.com/traai/async-deep-rl

(@ OpenAl Gym =n

Let’s keep the conversation going: https://openrl.slack.com

https://github.com/traai/async-deep-rl
https://gym.openai.com/

