

INF3490/INF4490 - Biologically inspired computing

Lecture 1 – 2016

Jim Tørresen

UiO **Department of Informatics** University of Oslo

INF3490/INF4490: Biologically Inspired Computing – Autumn 2016

- Lecturer:
 - Kai Olav Ellefsen (<u>kaiolae@ifi.uio.no</u>)
 - Jim Tørresen (jimtoer@ifi.uio.no)
 - Invited (Kyrre Glette + potential guest lecturer)
- Lecture time: Wednesday 10.15-12.00
- Lecture room: OJD 3437 Sem. room C (First lectures: Lille Aud)
- Group Lecture (starting next week):
 - Group 2: Tuesday 14:15-16:00 (OJD 3468 Computer Room Fortress)
 - Group 1: Thursday 10:15-12:00 (OJD 3418 Computer Room Limbo)
 - Group 3: Friday 10:15-12:00 (OJD 3468 Computer Room Fortress)
- Course web page: <u>www.uio.no/studier/emner/matnat/ifi/INF3490</u>

Group Teachers

Torstein Brevig

Ole Herman Schumacher Elgesem

Bård-Kristian Krohg

Tuesday

Thursday

Friday

3

INF3490/INF4490 Syllabus:

- Selected parts of the following books (details on course web page):
 - A.E. Eiben and J.E. Smith: Introduction to Evolutionary Computing, Second Edition (ISBN 978-3-662-44873-1). Springer.
 - S. Marsland: Machine learning: An Algorithmic Perspective. ISBN: 978-1466583283
 - On-line papers (on the course web page).
- The lecture notes.

Obligatory Exercises:

- Two exercises on evolutionary algorithms and machine learning.
- Students registered for INF4490 will be given additional tasks in the excercises.

Supporting Literature in Norwegian (not syllabus)

Jim Tørresen: hva er KUNSTIG INTELLIGENS Universitetsforlaget Nov 2013, ISBN: 9788215020211

Topics:

- Kunstig intelligens og intelligente systemer
- Problemløsning med kunstig intelligens
- Evolusjon, utvikling og læring
- Sansing og oppfatning
- Bevegelse og robotikk
- Hvor intelligente kan og bør maskiner bli?

Username and Password Course Web Page

username: authorization

password: complete

UiO **Content of Informatics**

University of Oslo

Lecture Plan Autumn 2016 (tentative)

Date	Торіс	Syllabus
24.08.2016	Intro to the course. Optimization and search.	Marsland (chapter 9.1, 9.4-9.6)
31.08.2016	Evolutionary algorithms I: Introduction and representation.	Eiben & Smith (chapter 1-4, not 1.4, 3.6 and 4.4.2)
07.09.2016	Evolutionary algorithms II: Population management and popular algorithms	Eiben & Smith (chapter 5-6, not 5.2.6, 5.5.7, 6.5-6.6 and 6.8) (+ Marsland 10.1-10.4)
14.09.2016	Evolutionary algorithms III: Multi-objective optimization. Hybrid algorithms. Working with evolutionary algorithms.	Eiben & Smith (chapter 9, 10, 12, not 10.4 and 12.3.4)
21.09.2016	Intro to machine learning and classification. Single-layer neural networks.	Marsland (chapter 1 and 3, not 3.4.1)
28.09.2016	Multi-layer neural networks. Backpropagation and practical issues.	Marsland (chapter 2.2 and 4)
05.10.2016	Break	
12.10.2016	Reinforcement learning and Deep Learning	Marsland (chapter 11) + online paper
19.10.2016	Support vector machines. Ensemble learning. Dimensionality reduction.	Marsland (chapter 8, 13, 6.2.)
26.10.2016	Unsupervised learning. K-means. Self-organizing maps.	Marsland (chapter 14)
02.11.2016	Swarm Intelligence. Evolvable hardware.	TBA (On-line papers on the course web page)
09.11.2016	Bio-inspired computing for robots and music. Future perspectives on Artificial Intelligence including ethical issues	On-line papers on the course web page
16.11.2016	Summary and Questions	

What is the Course about?

- Artificial Intelligence/Machine learning/Self-learning:
 - Technology that can adapt by learning
- Systems that can sense, reason (think) and/or respond
- Why bio-inspired?
- Increase intelligence in both single node and multiple node systems

UiO **Department of Informatics** University of Oslo

Self learning/Machine learning (ex: evolutionary computation)

Man/Woman vs Machine – Who are smartest?

- Machines are good at:
 - number crunching

- storing data and searching in data
- specific tasks (e.g. control systems in manufacturing)
- Humans are good at:
 - sensing (see, hear, smell etc and be able to recognize what we senses)
 - general thinking/reasoning
 - motion control (speaking, walking etc).

UiO **Department of Informatics** University of Oslo

Turing Test (1956)

 A machines is intelligent when a human communicating with text is unable to distinguish the machine from a human.

- Requirements:
 - recognize and generate *natural language* to communicate as a human
 - store the information for *representing knowledge* it has received or are receiving
 - *reasoning* based on stored information and draw new conclusions
 - be able to learn to *adapt* to new circumstances and extract patterns

Major Mechanisms in Nature

- Evolution: Biological systems develop and change during generations.
- Development/growth: By cell division a multi-cellular organism is developed.
- Learning: Individuals undergo learning through their lifetime.
- Collective behavior: Immune
 systems, flocks of birds, fishes etc
- Sensing and motion

What Methods are best?

Artificial Intelligence Application

- Smartphone user adaptation
- Detecting faces/people smiling in cameras
- Design of physical shapes
- Web search
- Route planning
- Service robots
- Driverless cars
- Active music
- ??

UiO Department of Informatics

University of Oslo

INF3490 - Biologically inspired computing - University of Oslo www.uio.no/studier/emner/matnat/ifi/INF3490/ -

Schemes for classification, search and optimization based on **bio-inspired** mechanisms are introduced. This includes evolutionary computation, artificial neural ...

INF4490 - Biologically inspired computing - University of Oslo www.uio.no/studier/emner/matnat/ifi/INF4490/ -

Schemes for classification, search and optimization based on **bio-inspired** mechanisms are introduced. This includes evolutionary computation, artificial neural ...

Robotics and Intelligent Systems (ROBIN) - Department of Informatics

www.mn.uio.no > UiO > The Faculty of Mathematics and Natural Sciences -

Nov 21, 2010 - Home UiO The Faculty of Mathematics and Natural Sciences ... with robots who aided by biologically inspired principles for instance learn to ... You've visited this page 3 times. Last visit: 8/14/16

Persons tagged with «Biologically-inspired Computing» - University of ...

https://www.uio.no/english/?vrtx...Biologically-inspired%20Computing... -

Name, Phone, E-mail, Tags. Glette, Kyrre Associate Professor, +47-22841695, kyrrehg@ifi.uio.no ·

UiO **Content of Informatics**

University of Oslo

UiO **Content of Informatics**

University of Oslo

Google Driverless Car

(Inter) Active Music

Direct Control

- Navigate within the song
- Control certain instruments (e.g. keep playing the chorus drumbeat in the verse)
- \circ Change the tempo of the song

Indirect Control

- Use on-body sensors to adapt the music to the mood of the user
- Listen to music that pushes you to work out harder
- Fuse the musical preferences of multiple users into one song

Ant Colony Optimization (ACO)

- Ants find shortest path to food source from nest.
- Ants deposit pheromone along traveled path which is used by other ants to follow the trail.
- This kind of indirect communication via the local environment is called stigmergy.

UiO **Department of Informatics**

University of Oslo

EPEC: Prediction and Coordination for Robots and Interactive Music 2 PhDs + 1 post-doc 2015-2019

Goal: Design, implement and evaluate multi-sensor systems that are able to sense, learn and predict future actions and events.

Funding: FRIPRO, Research Council of Norway

MECS: Multi-sensor Elderly Care Systems 2 PhDs + 1 post-doc (2015-2019)

Goal: Create and evaluate multimodal mobile human supportive systems that are able to sense, learn and predict future events.

Project consortium:

- Robotics and Intelligent Systems group (coordinator)
- DESIGN group (IFI)
- National:
 - o Oslo Municipality (Oslo kommune, Gamle Oslo)
 - Norwegian Centre for Integrated Care and Telemedicine (Tromsø)
 - XCENTER AS (3D sensor)
 - Novelda AS (ultra wideband sensor)
- International:
 - o University of Hertfordshire
 - University of Reading Whiteknights
 - Giraff Technologies AB

Funding: *IKTPLUSS, Research Council of Norway*

Is Terminator Coming Close?

Repetiton Questions

• What is machine learning?

• Give some examples of intelligent mechanisms in nature