

UiO **Contemporation** Department of Informatics University of Oslo

Optimization and Search Methods (selection)

- 1. Exhaustive search
- 2. Greedy search and hill climbing
- 3. Gradient ascent
- 4. Simulated annealing

UiO **Contemporation** University of Oslo

Optimization

We need

- A numerical representation *x* for all possible solutions to the problem
- A function *f*(*x*) that tells us how good solution *x* is
- A way of finding
 - $\max_{x} f(x)$ if bigger f(x) is better (benefit)
 - $\min_{x} f(x)$ if smaller f(x) is better (cost)

UiO : Department of Informatics University of Oslo

Optimisation and Search

 Continous Optimization is the mathematical discipline which is concerned with finding the maxima and minima of functions, possibly subject to constraints.

• **Discrete Optimization** is the activity of looking thoroughly in order to find an item with specified properties among a collection of items.

UiO **Compartment of Informatics**

Discrete optimization

- Chip design
 - Routing tracks during chip layout design
- Timetabling
 - E.g.: Find a course time table with the minimum number of clashes for registered students
- Travelling salesman problem
 - Optimization of travel routes and similar logistics problems

UiO : Department of Informatics

- University of Oslo
 - 1. Exhaustive search
 - Test all possible solutions, pick the best
 - · Guaranteed to find the optimal solution

UiO **Contemportation** Department of Informatics University of Oslo

Exhaustive search

Only works for simple discrete problems, but can be approximated in continuous problems

- Sample the space at regular intervals (grid search)
- Sample the space randomly *N* times

UiO **Compartment of Informatics**

2. Greedy search

- Pick a solution as the current best
- Compare to all neighboring solutions
 - If no neighbor is better, then terminate
 - Otherwise, replace the current best with the best of the neighbors
 - Repeat

UiO **Contemportation** UiO **Contemporation** University of Oslo

Hill climbing

- · Pick a solution as the current best
- Compare to a random neighbor
 - $-% \left(f_{1}^{2},f_{2}^{2},f_{1}^{2},f_{2}^{2},f_{2}^{2},f_{1}^{2},f_{2}^{2$
 - Repeat

UiO **Contemporation** Department of Informatics University of Oslo

Continuous optimization

- Mechanics
 - Optimized design of mechanical shapes etc.
- Economics
 - Portfolio selection, pricing options, risk management etc.
- Control engineering
 - Process engineering, robotics etc.

UiO **Contemport of Informatics** University of Oslo

Gradient ascent / descent

Starting from $x^{(0)}$, we can iteratively find higher $f(x^{(k+1)})$ by adding a value proportional to the gradient to $x^{(k)}$:

$$x^{(k+1)} = x^{(k)} + \gamma \nabla f(x^{(k)})$$

15

UiO **Contemporation** University of Oslo

Local optima

Algorithms like greedy search, hill climbing and gradient ascent/descent can only find local optima:

- They will only move through a strictly improving chain of neighbors
- Once they find a solution with no better neighbors they stop

- If done slowly enough, the particles arrange themselves in the minimum energy state

23

UiO : Department of Informatics University of Oslo

4. Simulated annealing

- Set an initial temperature T
- · Pick an initial solution
- Repeat:
 - Pick a solution neighboring the current solution
 - If the new one is better, keep it
 - Otherwise, keep the new one with a probability $P(\Delta f, T) = e^{-\Delta f/T}$
 - Decrease T