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INF3490 - Biologically inspired computing

Lecture 2: Eiben and Smith, chapter 1-4

Evolutionary Algorithms -
Introduction and representation

Kai Olav Ellefsen

Evolution

• Biological evolution:
– Lifeforms adapt to a particular environment over 

successive generations.
– Combinations of traits that are better adapted tend 

to increase representation in population.
– Mechanisms: Variation (Crossover, Mutation) and 

Selection (Survival of the fittest).
• Evolutionary Computing (EC):

– Mimic the biological evolution to optimize solutions to 
a wide variety of complex problems.

– In every new generation, a new set of solutions is 
created using bits and pieces of the fittest of the old.

Evolution in Nature

• A population of individuals exists in an environment 
with limited resources

• Competition for resources causes selection of fitter
individuals that are better adapted to the 
environment

• These individuals act as seeds for the generation of 
new individuals through recombination and 
mutation

• Over time Natural selection causes a rise in the 
fitness of the population
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Evolutionary Algorithms (EAs)

• EAs fall into the category of “generate and test” 
algorithms

• They are stochastic, population-based algorithms
• Variation operators (recombination and mutation) 

create the necessary diversity and thereby facilitate 
novelty

• Selection reduces diversity and acts as a force 
pushing quality

12
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Hillclimbing Problem in Search General scheme of EAs
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PopulationPopulation

ParentsParents
Parent selection

Survivor selection
OffspringOffspring

Recombination
(crossover)

Mutation

Intialization

Termination

EA scheme in pseudo-code
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Scheme of an EA:
Two pillars of evolution
There are two competing forces 
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Increasing population 
diversity by genetic operators

 mutation
 recombination

Push towards novelty

Decreasing population diversity
by selection

 of parents
 of survivors

Push towards quality
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Representation: EA terms

1 0 1 1
Chromosome (array 
datatype)

allele= 0 or 1 (what values a 
gene can have)

0    1     2

locus: the position of a gene

gene: one element of 
the array genotype: a set of gene 

values (data variable)

phenotype: what could be 
built/developed based on the 
genotype

n

Main EA components:
What are the different types of EAs
• Historically different flavours of EAs have been 

associated with different data types to represent 
solutions
– Binary strings : Genetic Algorithms (GA)
– Real-valued vectors : Evolution Strategies (ES)
– Finite state Machines: Evolutionary Programming (EP)
– LISP trees: Genetic Programming (GP)

• These differences are largely irrelevant, best 
strategy 
– choose representation to suit problem
– choose variation operators to suit representation
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Main EA components:
Evaluation (fitness) function 

• Represents the 
task to solve

• Enables
selection 
(provides basis 
for comparison)

• Assigns a single 
real-valued 
fitness to each 
phenotype

19

General scheme of EAs
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Main EA components:
Population

• The candidate solutions of the problem
• A population is a multiset of individuals
• Population is the basic unit of evolution, i.e., the 

population is evolving, not the individuals
• Selection operators act on population level
• Variation operators act on individual level

21

General scheme of EAs
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Main EA components:
Selection mechanism (1/3)
• Identifies individuals 

– to become parents
– to survive

• Pushes population towards higher fitness
• Parent selection is usually probabilistic

– high quality solutions more likely to be selected 
than low quality, but not guaranteed

– This stochastic nature can aid escape from local 
optima
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Example: roulette wheel selection

fitness(A) = 3
fitness(B) = 1
fitness(C) = 2

A C

1/6 = 17%

3/6 = 50%

B

2/6 = 33%

Main EA components:
Selection mechanism (2/3)

24
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Main EA components:
Selection mechanism (3/3)

Survivor selection:
• N parents + K offspring -> N individuals (new 

population)
• Often deterministic:

– Fitness based: e.g., rank parents + offspring and 
take best 

– Age based: make as many offspring as parents 
and delete all parents 

• Sometimes a combination of stochastic and 
deterministic (elitism)
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General scheme of EAs
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Main EA components:
Variation operators
• Role: to generate new candidate solutions 
• Usually divided into two types according to their arity

(number of inputs to the variation operator):
– Arity 1 : mutation operators
– Arity >1 : recombination operators
– Arity = 2 typically called crossover
– Arity > 2 is formally possible, seldom used in EC
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Main EA components:
Mutation (1/2)
• Role: cause small, random variance to a genotype
• Element of randomness is essential and 

differentiates it from other unary heuristic operators
• Importance ascribed  depends on representation and 

historical dialect:
– Binary GAs – background operator responsible for 

preserving and introducing diversity
– EP for FSM’s / continuous variables – the only search 

operator
– GP – hardly used

28
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before

1  1  1  0  1  1  1after

1  1  1  1  1  1  1

Main EA components:
Mutation (2/2)

29

Main EA components:
Recombination (1/2)
• Role: merges information from parents into offspring
• Choice of what information to merge is stochastic
• Hope is that some offspring are better by combining 

elements of genotypes that lead to good traits

30

1  1  1  1  1  1  1 0  0  0  0  0  0  0 

Parents

cut cut

Offspring

Main EA components:
Recombination (2/2)
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1  1  1  0  0  0  0 0  0  0  1  1  1  1 

General scheme of EAs
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Main EA components:
Initialisation / Termination
• Initialisation usually done at random, 

– Need to ensure even spread and mixture of possible allele 
values

– Can include existing solutions, or use problem-specific 
heuristics, to “seed” the population

• Termination condition checked every generation 
– Reaching some (known/hoped for) fitness
– Reaching some maximum allowed number of generations
– Reaching some minimum level of diversity
– Reaching some specified number of generations without 

fitness improvement
33

Place 8 queens on an 8x8 chessboard in
such a way that they cannot check each other

Example: 
The 8-queens problem

34

Example: 
The 8-queens problem – one solution

35
1 23 45 6 7 8

Genotype:
a permutation of 
the numbers 1–8

Phenotype:
a board configuration 

Possible mapping

The 8-queens problem: 
Representation

36
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The 8-queens problem: 
Fitness evaluation

• Penalty of one queen: the number of queens she 
can check

• Penalty of a configuration: the sum of penalties 
of all queens

• Note: penalty is to be minimized

• Fitness of a configuration: inverse penalty to be 
maximized

37

Small variation in one permutation, e.g.:
• swapping values of two randomly chosen positions, 

1 23 45 6 7 8 1 23 4 567 8

The 8-queens problem: 
Mutation

38

Combining two permutations into two new permutations:
 choose random crossover point
 copy first parts into children
 create second part by inserting values from other parent:

• in the order they appear there 
• beginning after crossover point
• skipping values already in child

8 7 6 42 531
1 3 5 24 678

8 7 6 45 123
1 3 5 62 874

The 8-queens problem: 
Recombination

39

The 8-queens problem: 
Selection
• Parent selection:

– Pick 5 random parents and take best 2 to undergo 
crossover

• Survivor selection (replacement)
– Merge old (parents) and new (offspring) 

population
– Throw out the 2 worst solutions

40
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Typical EA behaviour: Stages
Stages in optimising on a 1-dimensional fitness landscape

41

Early stage:
quasi-random population distribution

Mid-stage:
population arranged around/on hills

Late stage:
population concentrated on high hills

Typical EA behaviour:
Typical run: progression of fitness

42Typical run of an EA shows so-called “anytime behavior”

Typical EA behaviour:
Are long runs beneficial?

• Answer:
– It depends on how much you want the last bit of 

progress
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T: time needed to reach level F after random initialisation  

T
Time (number of generations)
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F: fitness after smart initialisationF

• Answer: it depends.
- Possibly good, if good solutions/methods exist.
- Care is needed, see chapter/lecture on hybridisation.

Typical EA behaviour: Is it worth 
expending effort on smart initialisation?

44
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Traditional View on EA Performance

45Scale of “all” problems
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Random search

Special, problem tailored method

Evolutionary algorithm

Typical EA behaviour:
EAs and domain knowledge
• Trend in the 90’s:

adding problem specific knowledge to EAs
(special variation operators, repair, etc)

• Result: EA performance curve “deformation”: 
– better on problems of the given type
– worse on problems different from given type
– amount of added knowledge is variable

• Recent theory suggests the search for an “all-purpose” 
algorithm may be fruitless

46

Chapter 4: Representation, Mutation, 
and Recombination

• Role of representation and variation operators

• Most common representation of genomes:
– Binary
– Integer
– Real-Valued or Floating-Point
– Permutation
– Tree

47

Role of representation and variation 
operators

• First stage of building an EA and most difficult one: 
choose right representation for the problem

• Type of variation operators needed depends on 
chosen representation

• TSP problem
– What are possible representations?

48
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Binary Representation

• One of the earliest representations
• Genotype consists of a string of binary digits

49

Binary Representation:
Mutation

• Alter each gene independently with a probability pm

• pm is called the mutation rate
– Typically between 1/pop_size and 1/ chromosome_length

50

Binary Representation:
1-point crossover
• Choose a random point on the two parents
• Split parents at this crossover point
• Create children by exchanging tails

51

Binary Representation:
n-point crossover
• Choose n random crossover points
• Split along those points
• Glue parts, alternating between parents

52
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Binary Representation:
Uniform crossover

• Assign 'heads' to one parent, 'tails' to the other
• Flip a coin for each gene of the first child
• Make an inverse copy of the gene for the second child
• Inheritance is independent of position

53

Binary Representation:
Crossover OR mutation? (1/3)
• Decade long debate: 

– which one is better / necessary ?

• Answer (at least, rather wide agreement):
– it depends on the problem, but in general, it is 

good to have both
– both have a different role
– mutation-only-EA is possible, x-over-only-EA 

would not work

54

Binary Representation:
Crossover OR mutation? (2/3)

Exploration: Discovering promising areas in the 
search space, i.e. gaining information on the problem
Exploitation: Optimising within a promising area, i.e. 
using information

55

Binary Representation:
Crossover OR mutation? (3/3)

There is co-operation AND competition between them:

• Crossover is explorative, it makes a big jump to an area 
somewhere “in between” two (parent) areas
• Mutation is exploitative, it creates random small
diversions, thereby staying near (in the area of) the parent

56
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Integer Representation
• Some problems naturally have integer variables,     

– e.g. image processing parameters

• Others take categorical values from a fixed set 
– e.g. {blue, green, yellow, pink}

• N-point / uniform crossover operators work

• Extend bit-flipping mutation to make:
– “creep” i.e. more likely to move to similar value 

• Adding a small (positive or negative) value to each 
gene with probability p.

– Random resetting (esp. categorical variables)
• With probability pm a new value is chosen at random

57

Real-Valued or Floating-Point 
Representation: Uniform Mutation 
• General scheme of floating point mutations

• Uniform Mutation

– Analogous to bit-flipping (binary) or random resetting 
(integers)

58

ll xxxx xx   ..., , ...,, 11

 iiii UBLBxx ,, 

xi   drawn randomly (uniform) from LBi,UBi 

Real-Valued or Floating-Point 
Representation: Nonuniform Mutation 
• Non-uniform mutations:

– Most common method is to add random deviate 
to each variable separately, taken from N(0, ) 
Gaussian distribution and then curtail to range

x’i = xi + N(0,)
– Standard deviation , mutation step size, 

controls amount of change (2/3 of drawings will lie 
in range (-  to + ))

59

Real-Valued or Floating-Point 
Representation:
Crossover operators
• Discrete recombination:

– each allele value in offspring z comes from one of its 
parents (x,y) with equal probability: zi = xi or yi

– Could use n-point or uniform

• Intermediate recombination:
– exploits idea of creating children “between” parents 

(hence a.k.a. arithmetic recombination)
– zi =  xi + (1 - ) yi where  : 0    1.
– The parameter  can be:

• constant:  =0.5 -> uniform arithmetical crossover
• variable (e.g. depend on the age of the population) 
• picked at random every time

60
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Real-Valued or Floating-Point Representation:
Simple arithmetic crossover 

• Parents: x1,…,xn  and y1,…,yn
• Pick a random gene (k) after this point mix 

values
• child1 is:

• reverse for other child. e.g. with  = 0.5

61

nxkxkykxx  )1(ny ..., ,1)1(1 , ..., ,1 

Real-Valued or Floating-Point 
Representation: Single arithmetic crossover 

• Parents: x1,…,xn  and y1,…,yn
• Pick a single gene (k) at random, 
• child1 is:

• Reverse for other child. e.g. with  = 0.5

62

nkkk xxyxx  ..., ,)1( , ..., ,1  

Real-Valued or Floating-Point 
Representation:
Whole arithmetic crossover
• Most commonly used
• Parents: x1,…,xn  and y1,…,yn
• Child1 is:

• reverse for other child. e.g. with  = 0.5

63

yaxa  )1(

Permutation Representations
• Useful in ordering/sequencing problems
• Task is (or can be solved by) arranging some objects 

in a certain order. Examples: 
– production scheduling: important thing is which 

elements are scheduled before others (order)
– Travelling Salesman Problem (TSP) : important thing is 

which elements occur next to each other (adjacency)
• if there are n variables then the representation is 

as a list of n integers, each of which occurs 
exactly once

64
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Permutation Representation:
TSP example

• Problem:
• Given n cities
• Find a complete tour with 

minimal length
• Encoding:

• Label the cities 1, 2, … , n
• One complete tour is one 

permutation (e.g. for n =4 
[1,2,3,4], [3,4,2,1] are OK)

• Search space is BIG: 
for 30 cities there are 30!  1032

possible tours
65

Permutation Representations:
Mutation
• Normal mutation operators lead to 

inadmissible solutions
– Mutating a single gene destroys the permutation

• Therefore must change at least two values
• Mutation parameter now reflects the 

probability that some operator is applied 
once to the whole string, rather than 
individually in each position

66

Permutation Representations:
Swap mutation
• Pick two alleles at random and swap their 

positions

67

Permutation Representations:
Insert Mutation
• Pick two allele values at random
• Move the second to follow the first, shifting 

the rest along to accommodate
• Note that this preserves most of the order 

and the adjacency information

68
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Permutation Representations:
Scramble mutation
• Pick a subset of genes at random
• Randomly rearrange the alleles in those 

positions

69

Permutation Representations:
Inversion mutation
• Pick two alleles at random and then invert 

the substring between them.
• Preserves most adjacency information (only 

breaks two links) but disruptive of order 
information

70

Permutation Representations:
Crossover operators
• “Normal” crossover operators will often lead 

to inadmissible solutions

• Many specialised operators have been 
devised which focus on combining order or 
adjacency information from the two parents

71

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

Permutation Representations:
Partially Mapped Crossover (PMX) (1/2)
Informal procedure for parents P1 and P2:

1. Choose random segment and copy it from P1 
2. Starting from the first crossover point look for elements in that segment of 

P2 that have not been copied
3. For each of these i look in the offspring to see what element j has been 

copied in its place from P1
4. Place i into the position occupied j in P2, since we know that we will not 

be putting j there (as is already in offspring)
5. If the place occupied by j in P2 has already been filled in the offspring k, 

put i in the position occupied by k in P2
6. Having dealt with the elements from the crossover segment, the rest of 

the offspring can be filled from P2. 

Second child is created analogously
72
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Permutation Representations:
Partially Mapped Crossover (PMX) (2/2)

73

Permutation Representations:
Edge Recombination (1/3)
• Works by constructing a table listing which 

edges are present in the two parents, if an 
edge is common to both, mark with a +

• e.g. [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]

74

Permutation Representations:
Edge Recombination (2/3)
Informal procedure: once edge table is 

constructed
1. Pick an initial element, entry, at random and put it in the 

offspring
2. Set the variable current element = entry
3. Remove all references to current element from the table
4. Examine list for current element:

– If there is a common edge, pick that to be next element
– Otherwise pick the entry in the list which itself has the shortest list
– Ties are split at random

5. In the case of reaching an empty list:
– a new element is chosen at random

75

Permutation Representations:
Edge Recombination (3/3)

76
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Permutation Representations:
Order crossover (1/2)
• Idea is to preserve relative order that elements 

occur
• Informal procedure:

– 1. Choose an arbitrary part from the first parent
– 2. Copy this part to the first child
– 3. Copy the numbers that are not in the first part, to 

the first child:
• starting right from cut point of the copied part, 
• using the order of the second parent 
• and wrapping around at the end

– 4. Analogous for the second child, with parent roles 
reversed

77

Permutation Representations:
Order crossover (2/2)
• Copy randomly selected set from first parent

• Copy rest from second parent in order 
1,9,3,8,2

78

Permutation Representations:
Cycle crossover (1/2)
Basic idea: 
Each allele comes from one parent together with its 

position.
Informal procedure:
1. Make a cycle of alleles from P1 in the following way. 

(a) Start with the first allele of P1. 
(b) Look at the allele at the same position in P2.
(c) Go to the position with the same allele in P1. 
(d) Add this allele to the cycle.
(e) Repeat step b through d until you arrive at the first allele of P1.

2. Put the alleles of the cycle in the first child on the 
positions they have in the first parent.

3. Take next cycle from second parent
79

Permutation Representations:
Cycle crossover (2/2)

• Step 1: identify cycles

• Step 2: copy alternate cycles into offspring

80
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Tree Representation (1/5)

• Trees are a universal form, e.g. consider 

• Arithmetic formula:

• Logical formula:

• Program:

81












15
)3(2 yx

(x  true)  (( x  y )  (z  (x  y)))

i =1;
while (i < 20)
{

i = i +1
} 

Tree Representation (2/5)
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










15
)3(2 yx

Tree Representation (3/5)

83

(x  true)  (( x  y )  (z 
(x  y)))

Tree Representation (4/5)

84

i =1;
while (i < 20)
{

i = i +1
} 
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Tree Representation (5/5)

• In GA, ES, EP chromosomes are linear 
structures (bit strings, integer string, real-
valued vectors, permutations)

• Tree shaped chromosomes are non-linear 
structures

• In GA, ES, EP the size of the chromosomes 
is fixed

• Trees in GP (Genetic Programming) may 
vary in depth and width 

85

Tree Representation:
Mutation (1/2)
• Most common mutation: replace randomly 

chosen subtree by randomly generated tree

86

Tree Representation:
Mutation (2/2)
• Mutation has two parameters:

– Probability pm to choose mutation 
– Probability to chose an internal point as the root 

of the subtree to be replaced
• Remarkably pm is advised to be 0 (Koza’92) 

or very small, like 0.05 (Banzhaf et al. ’98)
• The size of the child can exceed the size of 

the parent

87

Tree Representation: Recombination (1/2)

• Most common recombination: exchange two 
randomly chosen subtrees among the 
parents

• Recombination has two parameters:
– Probability pc to choose recombination 
– Probability to chose an internal point within each 

parent as crossover point
• The size of offspring can exceed that of the 

parents
88
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Child 2

Parent 1 Parent 2

Child 1

Tree Representation: Recombination (2/2)

89


