

UfO **5 Department of Informatics** University of Outs

Evolution in Nature

- A population of individuals exists in an environment with limited resources
- Competition for resources causes selection of *fitter* individuals that are better adapted to the
 environment
- These individuals act as seeds for the generation of new individuals through recombination and mutation

11

• Over time *Natural selection* causes a rise in the fitness of the population

UIO S Department of informatics Informatics of Only

Evolutionary Algorithms (EAs)

- EAs fall into the category of "generate and test" algorithms
- · They are stochastic, population-based algorithms
- Variation operators (recombination and mutation) create the necessary diversity and thereby facilitate novelty
- Selection reduces diversity and acts as a force pushing quality

UiO **5 Department of Informatios** Valvealty of Ode

Main EA components: Population

- The candidate solutions of the problem
- A population is a *multiset* of individuals
- Population is the basic unit of evolution, i.e., the **population is evolving**, not the individuals

- Selection operators act on population level
- Variation operators act on individual level

UiO **: Department of Informatics** Udventy of Ode

Main EA components: Selection mechanism (3/3)

Survivor selection:

- N parents + K offspring -> N individuals (new population)
- Often deterministic:
 - Fitness based: e.g., rank parents + offspring and take best
 - Age based: make as many offspring as parents and delete all parents

25

 Sometimes a combination of stochastic and deterministic (elitism)

General scheme of EAs

<section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

UIO S Department of Informatics University of Only

UIO S Department of Informatios Valvealty of Ode

Main EA components: Mutation (1/2)

- · Role: cause small, random variance to a genotype
- Element of randomness is essential and differentiates it from other unary heuristic operators
- Importance ascribed depends on representation and historical dialect:
 - Binary GAs background operator responsible for preserving and introducing diversity
 - EP for FSM's / continuous variables the only search operator
 - GP hardly used

UiO <mark>5 Department of Informatios</mark> Webscalty of Oak

Main EA components: Initialisation / Termination

- · Initialisation usually done at random,
 - Need to ensure even spread and mixture of possible allele values
 - Can include existing solutions, or use problem-specific heuristics, to "seed" the population
- Termination condition checked every generation
 - Reaching some (known/hoped for) fitness
 - Reaching some maximum allowed number of generations
 - Reaching some minimum level of diversity
 - Reaching some specified number of generations without fitness improvement

UiO **5 Department of Informatios** Valvealty of Ode

The 8-queens problem: Fitness evaluation

- Penalty of one queen: the number of queens she can check
- Penalty of a configuration: the sum of penalties of all queens
- · Note: penalty is to be minimized
- Fitness of a configuration: inverse penalty to be maximized

37

39

Combining two permutations into two new permutations: choose random crossover point copy first parts into children create second part by inserting values from other parent: in the order they appear there beginning after crossover point skipping values already in child

UIO S Department of Informatics University of Only

The 8-queens problem: Selection

- · Parent selection:
 - Pick 5 random parents and take best 2 to undergo crossover
- Survivor selection (replacement)
 - Merge old (parents) and new (offspring) population
 - Throw out the 2 worst solutions

UiO # Department of Informatics Videoxity of Ode

Chapter 4: Representation, Mutation, and Recombination

• Role of representation and variation operators

47

- Most common representation of genomes:
 - Binary
 - Integer
 - Real-Valued or Floating-Point
 - Permutation
 - Tree

UIO S Department of informatics University of Only

Role of representation and variation operators

- First stage of building an EA and most difficult one: choose *right* representation for the problem
- Type of variation operators needed depends on chosen representation
- TSP problem
 - What are possible representations?

USO Department of Information Use the second of the second child Difform crossover Assign 'heads' to one parent, 'tails' to the other Flip a coin for each gene of the first child Make an inverse copy of the gene for the second child Inheritance is independent of position parents Children Children

UIO S Department of Informatios Valvealty of Ode

Binary Representation: Crossover OR mutation? (1/3)

- Decade long debate:
 - which one is better / necessary ?
- Answer (at least, rather wide agreement):
 - it depends on the problem, but in general, it is good to have both
 - both have a different role
 - mutation-only-EA is possible, x-over-only-EA would not work

UfO **3 Department of Informatics** University of Outs

Binary Representation: Crossover OR mutation? (2/3)

Exploration: Discovering promising areas in the search space, i.e. gaining information on the problem **Exploitation:** Optimising within a promising area, i.e. using information

53

55

UIO S Department of Informatics University of Only

Binary Representation: Crossover OR mutation? (3/3)

There is co-operation AND competition between them:

- **Crossover** is **explorative**, it makes a *big* jump to an area somewhere "in between" two (parent) areas
- **Mutation** is **exploitative**, it creates random *small* diversions, thereby staying near (in the area of) the parent

60

UiO **5 Department of Informatios** University of Only

Integer Representation

- Some problems naturally have integer variables, - e.g. image processing parameters
- · Others take categorical values from a fixed set - e.g. {blue, green, yellow, pink}
- N-point / uniform crossover operators work
- Extend bit-flipping mutation to make:
 - "creep" i.e. more likely to move to similar value
 - · Adding a small (positive or negative) value to each gene with probability p
 - Random resetting (esp. categorical variables) • With probability *p*_m a new value is chosen at random

UIO S Department of Informatios University of Only

Real-Valued or Floating-Point Representation: Uniform Mutation

· General scheme of floating point mutations $\overline{x} = \langle x_1, ..., x_l \rangle \rightarrow \overline{x}' = \langle x_1', ..., x_l' \rangle$

 $x_i, x'_i \in [LB_i, UB_i]$

Uniform Mutation

 x'_i drawn randomly (uniform) from $[LB_i, UB_i]$

- Analogous to bit-flipping (binary) or random resetting (integers)

UiO S Department of Informatics Videosity of Oxis **Real-Valued or Floating-Point Representation: Nonuniform Mutation** Non-uniform mutations: - Most common method is to add random deviate to each variable separately, taken from N(0, σ) Gaussian distribution and then curtail to range $x'_{i} = x_{i} + N(0,\sigma)$ - Standard deviation σ , **mutation step size**, controls amount of change (2/3 of drawings will lie in range (- σ to + σ)) 59

UIO 5 Department of Informatics Their water of Cale

Real-Valued or Floating-Point Representation: Crossover operators

- Discrete recombination:
 - each allele value in offspring *z* comes from one of its parents (*x*, *y*) with equal probability: $z_i = x_i$ or y_i
 - Could use **n-point** or **uniform**
- Intermediate recombination:
 - exploits idea of creating children "between" parents (hence a.k.a. arithmetic recombination)

 $-z_i = \alpha x_i + (1 - \alpha) y_i$ where $\alpha : 0 \le \alpha \le 1$.

- The parameter α can be:
- constant: $\alpha = 0.5$ -> uniform arithmetical crossover variable (e.g. depend on the age of the population) picked at random every time

UiO **I Department of Informatics** University of Only

Permutation Representation: TSP example

- Problem:
 - Given n cities
 - Find a complete tour with minimal length
- Encoding:
 - Label the cities 1, 2, ..., n
 - One complete tour is one permutation (e.g. for n =4 [1,2,3,4], [3,4,2,1] are OK)
- Search space is BIG: for 30 cities there are $30! \approx 10^{32}$ possible tours

UIO **5 Department of Informatios** Webvealty of Only

Permutation Representations: Mutation

- Normal mutation operators lead to inadmissible solutions
 - Mutating a single gene destroys the permutation
- Therefore must change at least two values
- Mutation parameter now reflects the probability that some operator is applied once to the whole string, rather than individually in each position

6514]

UIO 5 Department of information Valvasity of Outs
Permutation Representations: Edge Recombination (1/3)
 Works by constructing a table listing which edges are present in the two parents, if an edge is common to both, mark with a + e.g. [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1

Element	Edges	Element	Edges	
1	$2,\!5,\!4,\!9$	6	2,5+,7	
2	$1,\!3,\!6,\!8$	7	$3,\!6,\!8+$	
3	$2,\!4,\!7,\!9$	8	2,7+,9	
4	$1,\!3,\!5,\!9$	9	$1,\!3,\!4,\!8$	
5	$1,\!4,\!6+$			74

UfO 3 Department of Informatica University of Oda	
Permutation Representations: Edge Recombination (2/3)	
Informal procedure: once edge table is constructed	
 Pick an initial element, entry, at random and put it in the offspring 	
2. Set the variable <i>current element</i> = <i>entry</i>	
3. Remove all references to <i>current element</i> from the table	
4. Examine list for current element:	
 If there is a common edge, pick that to be next element 	
 Otherwise pick the entry in the list which itself has the shortest list Ties are split at random 	
5. In the case of reaching an empty list:	
 a new element is chosen at random 	
75	

UIO 5 Department of Informatics Usivealty of Ode										
Permutation Representations: Edge Recombination (3/3)										
			Element Edges Element Edges							
			1 2,5,4,9 6 2,5+,7							
			2 1,3,6,8 7 3,6,8+							
			3 2,4,7,9 8 2,7+, 9							
			4 1,3,5,9 9 1,3,4,8							
			5 1,4,6+							
	Choices	Element	Reason Partial							
		selected	result							
	All	1	Random [1]							
	2,5,4,9	5	Shortest list							
	4,6	6	Common edge							
	2,7	2	Random choice (both have two items in list) [1 5 6 2]							
	3,8	8	Shortest list [1 5 6 2 8]							
	7,9	7	Common edge [1 5 6 2 8 7]							
	3	3	Only item in list [1 5 6 2 8 7 3]							
	4,9	9	Random choice [1 5 6 2 8 7 3 9]							
	4	4	Last element [1 5 6 2 8 7 3 9 4]							

UiO **5 Department of Informatios** Valvealty of Ode UIO S Department of Informatios Valvealty of Ode **Permutation Representations: Permutation Representations:** Order crossover (2/2) Order crossover (1/2) • Copy randomly selected set from first parent Idea is to preserve relative order that elements occur Informal procedure: 123456789 - 1. Choose an arbitrary part from the first parent 4 5 6 7 - 2. Copy this part to the first child - 3. Copy the numbers that are not in the first part, to 937826514 the first child: · starting right from cut point of the copied part, · Copy rest from second parent in order · using the order of the second parent 1,9,3,8,2 · and wrapping around at the end - 4. Analogous for the second child, with parent roles 123456789 reversed 382456719 77 937826514

UiO **5 Department of Informatios** University of Only

Tree Representation (5/5)

- In GA, ES, EP chromosomes are linear structures (bit strings, integer string, realvalued vectors, permutations)
- Tree shaped chromosomes are non-linear structures
- In GA, ES, EP the size of the chromosomes is fixed

85

87

• Trees in GP (Genetic Programming) may vary in depth and width

UiO **3 Department of Informatics** University of Oxia

Tree Representation: Mutation (2/2)

- Mutation has two parameters:
 - Probability p_m to choose mutation
 - Probability to chose an internal point as the root of the subtree to be replaced
- Remarkably p_m is advised to be 0 (Koza'92) or very small, like 0.05 (Banzhaf et al. '98)
- The size of the child can exceed the size of the parent

UIO S Department of Informatics Informatics of Only

Tree Representation: Recombination (1/2)

- Most common recombination: exchange two randomly chosen subtrees among the parents
- · Recombination has two parameters:
 - Probability p_c to choose recombination
 - Probability to chose an internal point within each parent as crossover point
- The size of offspring can exceed that of the parents

