
29.08.2016

1

INF3490 - Biologically inspired computing

Lecture 2: Eiben and Smith, chapter 1-4

Evolutionary Algorithms -
Introduction and representation

Kai Olav Ellefsen

Evolution

• Biological evolution:
– Lifeforms adapt to a particular environment over

successive generations.
– Combinations of traits that are better adapted tend

to increase representation in population.
– Mechanisms: Variation (Crossover, Mutation) and

Selection (Survival of the fittest).
• Evolutionary Computing (EC):

– Mimic the biological evolution to optimize solutions to
a wide variety of complex problems.

– In every new generation, a new set of solutions is
created using bits and pieces of the fittest of the old.

Evolution in Nature

• A population of individuals exists in an environment
with limited resources

• Competition for resources causes selection of fitter
individuals that are better adapted to the
environment

• These individuals act as seeds for the generation of
new individuals through recombination and
mutation

• Over time Natural selection causes a rise in the
fitness of the population

11

Evolutionary Algorithms (EAs)

• EAs fall into the category of “generate and test”
algorithms

• They are stochastic, population-based algorithms
• Variation operators (recombination and mutation)

create the necessary diversity and thereby facilitate
novelty

• Selection reduces diversity and acts as a force
pushing quality

12

29.08.2016

2

Hillclimbing Problem in Search General scheme of EAs

14

PopulationPopulation

ParentsParents
Parent selection

Survivor selection
OffspringOffspring

Recombination
(crossover)

Mutation

Intialization

Termination

EA scheme in pseudo-code

15

Scheme of an EA:
Two pillars of evolution
There are two competing forces

16

Increasing population
diversity by genetic operators

 mutation
 recombination

Push towards novelty

Decreasing population diversity
by selection

 of parents
 of survivors

Push towards quality

29.08.2016

3

Representation: EA terms

1 0 1 1
Chromosome (array
datatype)

allele= 0 or 1 (what values a
gene can have)

0 1 2

locus: the position of a gene

gene: one element of
the array genotype: a set of gene

values (data variable)

phenotype: what could be
built/developed based on the
genotype

n

Main EA components:
What are the different types of EAs
• Historically different flavours of EAs have been

associated with different data types to represent
solutions
– Binary strings : Genetic Algorithms (GA)
– Real-valued vectors : Evolution Strategies (ES)
– Finite state Machines: Evolutionary Programming (EP)
– LISP trees: Genetic Programming (GP)

• These differences are largely irrelevant, best
strategy
– choose representation to suit problem
– choose variation operators to suit representation

18

Main EA components:
Evaluation (fitness) function

• Represents the
task to solve

• Enables
selection
(provides basis
for comparison)

• Assigns a single
real-valued
fitness to each
phenotype

19

General scheme of EAs

20

PopulationPopulation

ParentsParents
Parent selection

Survivor selection
OffspringOffspring

Recombination
(crossover)

Mutation

Intialization

Termination

29.08.2016

4

Main EA components:
Population

• The candidate solutions of the problem
• A population is a multiset of individuals
• Population is the basic unit of evolution, i.e., the

population is evolving, not the individuals
• Selection operators act on population level
• Variation operators act on individual level

21

General scheme of EAs

22

PopulationPopulation

ParentsParents
Parent selection

Survivor selection
OffspringOffspring

Recombination
(crossover)

Mutation

Intialization

Termination

Main EA components:
Selection mechanism (1/3)
• Identifies individuals

– to become parents
– to survive

• Pushes population towards higher fitness
• Parent selection is usually probabilistic

– high quality solutions more likely to be selected
than low quality, but not guaranteed

– This stochastic nature can aid escape from local
optima

23

Example: roulette wheel selection

fitness(A) = 3
fitness(B) = 1
fitness(C) = 2

A C

1/6 = 17%

3/6 = 50%

B

2/6 = 33%

Main EA components:
Selection mechanism (2/3)

24

29.08.2016

5

Main EA components:
Selection mechanism (3/3)

Survivor selection:
• N parents + K offspring -> N individuals (new

population)
• Often deterministic:

– Fitness based: e.g., rank parents + offspring and
take best

– Age based: make as many offspring as parents
and delete all parents

• Sometimes a combination of stochastic and
deterministic (elitism)

25

General scheme of EAs

26

PopulationPopulation

ParentsParents
Parent selection

Survivor selection
OffspringOffspring

Recombination
(crossover)

Mutation

Intialization

Termination

Main EA components:
Variation operators
• Role: to generate new candidate solutions
• Usually divided into two types according to their arity

(number of inputs to the variation operator):
– Arity 1 : mutation operators
– Arity >1 : recombination operators
– Arity = 2 typically called crossover
– Arity > 2 is formally possible, seldom used in EC

27

Main EA components:
Mutation (1/2)
• Role: cause small, random variance to a genotype
• Element of randomness is essential and

differentiates it from other unary heuristic operators
• Importance ascribed depends on representation and

historical dialect:
– Binary GAs – background operator responsible for

preserving and introducing diversity
– EP for FSM’s / continuous variables – the only search

operator
– GP – hardly used

28

29.08.2016

6

before

1 1 1 0 1 1 1after

1 1 1 1 1 1 1

Main EA components:
Mutation (2/2)

29

Main EA components:
Recombination (1/2)
• Role: merges information from parents into offspring
• Choice of what information to merge is stochastic
• Hope is that some offspring are better by combining

elements of genotypes that lead to good traits

30

1 1 1 1 1 1 1 0 0 0 0 0 0 0

Parents

cut cut

Offspring

Main EA components:
Recombination (2/2)

31

1 1 1 0 0 0 0 0 0 0 1 1 1 1

General scheme of EAs

32

PopulationPopulation

ParentsParents
Parent selection

Survivor selection
OffspringOffspring

Recombination
(crossover)

Mutation

Intialization

Termination

29.08.2016

7

Main EA components:
Initialisation / Termination
• Initialisation usually done at random,

– Need to ensure even spread and mixture of possible allele
values

– Can include existing solutions, or use problem-specific
heuristics, to “seed” the population

• Termination condition checked every generation
– Reaching some (known/hoped for) fitness
– Reaching some maximum allowed number of generations
– Reaching some minimum level of diversity
– Reaching some specified number of generations without

fitness improvement
33

Place 8 queens on an 8x8 chessboard in
such a way that they cannot check each other

Example:
The 8-queens problem

34

Example:
The 8-queens problem – one solution

35
1 23 45 6 7 8

Genotype:
a permutation of
the numbers 1–8

Phenotype:
a board configuration

Possible mapping

The 8-queens problem:
Representation

36

29.08.2016

8

The 8-queens problem:
Fitness evaluation

• Penalty of one queen: the number of queens she
can check

• Penalty of a configuration: the sum of penalties
of all queens

• Note: penalty is to be minimized

• Fitness of a configuration: inverse penalty to be
maximized

37

Small variation in one permutation, e.g.:
• swapping values of two randomly chosen positions,

1 23 45 6 7 8 1 23 4 567 8

The 8-queens problem:
Mutation

38

Combining two permutations into two new permutations:
 choose random crossover point
 copy first parts into children
 create second part by inserting values from other parent:

• in the order they appear there
• beginning after crossover point
• skipping values already in child

8 7 6 42 531
1 3 5 24 678

8 7 6 45 123
1 3 5 62 874

The 8-queens problem:
Recombination

39

The 8-queens problem:
Selection
• Parent selection:

– Pick 5 random parents and take best 2 to undergo
crossover

• Survivor selection (replacement)
– Merge old (parents) and new (offspring)

population
– Throw out the 2 worst solutions

40

29.08.2016

9

Typical EA behaviour: Stages
Stages in optimising on a 1-dimensional fitness landscape

41

Early stage:
quasi-random population distribution

Mid-stage:
population arranged around/on hills

Late stage:
population concentrated on high hills

Typical EA behaviour:
Typical run: progression of fitness

42Typical run of an EA shows so-called “anytime behavior”

Typical EA behaviour:
Are long runs beneficial?

• Answer:
– It depends on how much you want the last bit of

progress

43

T: time needed to reach level F after random initialisation

T
Time (number of generations)

Be
st

 fi
tn

es
s

in
 p

op
ul

at
io

n
F: fitness after smart initialisationF

• Answer: it depends.
- Possibly good, if good solutions/methods exist.
- Care is needed, see chapter/lecture on hybridisation.

Typical EA behaviour: Is it worth
expending effort on smart initialisation?

44

29.08.2016

10

Traditional View on EA Performance

45Scale of “all” problems

Pe
rfo

rm
an

ce
 o

f m
et

ho
ds

 o
n

pr
ob

le
m

s

Random search

Special, problem tailored method

Evolutionary algorithm

Typical EA behaviour:
EAs and domain knowledge
• Trend in the 90’s:

adding problem specific knowledge to EAs
(special variation operators, repair, etc)

• Result: EA performance curve “deformation”:
– better on problems of the given type
– worse on problems different from given type
– amount of added knowledge is variable

• Recent theory suggests the search for an “all-purpose”
algorithm may be fruitless

46

Chapter 4: Representation, Mutation,
and Recombination

• Role of representation and variation operators

• Most common representation of genomes:
– Binary
– Integer
– Real-Valued or Floating-Point
– Permutation
– Tree

47

Role of representation and variation
operators

• First stage of building an EA and most difficult one:
choose right representation for the problem

• Type of variation operators needed depends on
chosen representation

• TSP problem
– What are possible representations?

48

29.08.2016

11

Binary Representation

• One of the earliest representations
• Genotype consists of a string of binary digits

49

Binary Representation:
Mutation

• Alter each gene independently with a probability pm

• pm is called the mutation rate
– Typically between 1/pop_size and 1/ chromosome_length

50

Binary Representation:
1-point crossover
• Choose a random point on the two parents
• Split parents at this crossover point
• Create children by exchanging tails

51

Binary Representation:
n-point crossover
• Choose n random crossover points
• Split along those points
• Glue parts, alternating between parents

52

29.08.2016

12

Binary Representation:
Uniform crossover

• Assign 'heads' to one parent, 'tails' to the other
• Flip a coin for each gene of the first child
• Make an inverse copy of the gene for the second child
• Inheritance is independent of position

53

Binary Representation:
Crossover OR mutation? (1/3)
• Decade long debate:

– which one is better / necessary ?

• Answer (at least, rather wide agreement):
– it depends on the problem, but in general, it is

good to have both
– both have a different role
– mutation-only-EA is possible, x-over-only-EA

would not work

54

Binary Representation:
Crossover OR mutation? (2/3)

Exploration: Discovering promising areas in the
search space, i.e. gaining information on the problem
Exploitation: Optimising within a promising area, i.e.
using information

55

Binary Representation:
Crossover OR mutation? (3/3)

There is co-operation AND competition between them:

• Crossover is explorative, it makes a big jump to an area
somewhere “in between” two (parent) areas
• Mutation is exploitative, it creates random small
diversions, thereby staying near (in the area of) the parent

56

29.08.2016

13

Integer Representation
• Some problems naturally have integer variables,

– e.g. image processing parameters

• Others take categorical values from a fixed set
– e.g. {blue, green, yellow, pink}

• N-point / uniform crossover operators work

• Extend bit-flipping mutation to make:
– “creep” i.e. more likely to move to similar value

• Adding a small (positive or negative) value to each
gene with probability p.

– Random resetting (esp. categorical variables)
• With probability pm a new value is chosen at random

57

Real-Valued or Floating-Point
Representation: Uniform Mutation
• General scheme of floating point mutations

• Uniform Mutation

– Analogous to bit-flipping (binary) or random resetting
(integers)

58

ll xxxx xx  ..., , ...,, 11

 iiii UBLBxx ,, 

xi drawn randomly (uniform) from LBi,UBi 

Real-Valued or Floating-Point
Representation: Nonuniform Mutation
• Non-uniform mutations:

– Most common method is to add random deviate
to each variable separately, taken from N(0, )
Gaussian distribution and then curtail to range

x’i = xi + N(0,)
– Standard deviation , mutation step size,

controls amount of change (2/3 of drawings will lie
in range (-  to + ))

59

Real-Valued or Floating-Point
Representation:
Crossover operators
• Discrete recombination:

– each allele value in offspring z comes from one of its
parents (x,y) with equal probability: zi = xi or yi

– Could use n-point or uniform

• Intermediate recombination:
– exploits idea of creating children “between” parents

(hence a.k.a. arithmetic recombination)
– zi =  xi + (1 - ) yi where  : 0    1.
– The parameter  can be:

• constant:  =0.5 -> uniform arithmetical crossover
• variable (e.g. depend on the age of the population)
• picked at random every time

60

29.08.2016

14

Real-Valued or Floating-Point Representation:
Simple arithmetic crossover

• Parents: x1,…,xn  and y1,…,yn
• Pick a random gene (k) after this point mix

values
• child1 is:

• reverse for other child. e.g. with  = 0.5

61

nxkxkykxx )1(ny ..., ,1)1(1 , ..., ,1 

Real-Valued or Floating-Point
Representation: Single arithmetic crossover

• Parents: x1,…,xn  and y1,…,yn
• Pick a single gene (k) at random,
• child1 is:

• Reverse for other child. e.g. with  = 0.5

62

nkkk xxyxx ..., ,)1(, ..., ,1  

Real-Valued or Floating-Point
Representation:
Whole arithmetic crossover
• Most commonly used
• Parents: x1,…,xn  and y1,…,yn
• Child1 is:

• reverse for other child. e.g. with  = 0.5

63

yaxa )1(

Permutation Representations
• Useful in ordering/sequencing problems
• Task is (or can be solved by) arranging some objects

in a certain order. Examples:
– production scheduling: important thing is which

elements are scheduled before others (order)
– Travelling Salesman Problem (TSP) : important thing is

which elements occur next to each other (adjacency)
• if there are n variables then the representation is

as a list of n integers, each of which occurs
exactly once

64

29.08.2016

15

Permutation Representation:
TSP example

• Problem:
• Given n cities
• Find a complete tour with

minimal length
• Encoding:

• Label the cities 1, 2, … , n
• One complete tour is one

permutation (e.g. for n =4
[1,2,3,4], [3,4,2,1] are OK)

• Search space is BIG:
for 30 cities there are 30!  1032

possible tours
65

Permutation Representations:
Mutation
• Normal mutation operators lead to

inadmissible solutions
– Mutating a single gene destroys the permutation

• Therefore must change at least two values
• Mutation parameter now reflects the

probability that some operator is applied
once to the whole string, rather than
individually in each position

66

Permutation Representations:
Swap mutation
• Pick two alleles at random and swap their

positions

67

Permutation Representations:
Insert Mutation
• Pick two allele values at random
• Move the second to follow the first, shifting

the rest along to accommodate
• Note that this preserves most of the order

and the adjacency information

68

29.08.2016

16

Permutation Representations:
Scramble mutation
• Pick a subset of genes at random
• Randomly rearrange the alleles in those

positions

69

Permutation Representations:
Inversion mutation
• Pick two alleles at random and then invert

the substring between them.
• Preserves most adjacency information (only

breaks two links) but disruptive of order
information

70

Permutation Representations:
Crossover operators
• “Normal” crossover operators will often lead

to inadmissible solutions

• Many specialised operators have been
devised which focus on combining order or
adjacency information from the two parents

71

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

1 2 3 4 5

5 4 3 2 1

1 2 3 2 1

5 4 3 4 5

Permutation Representations:
Partially Mapped Crossover (PMX) (1/2)
Informal procedure for parents P1 and P2:

1. Choose random segment and copy it from P1
2. Starting from the first crossover point look for elements in that segment of

P2 that have not been copied
3. For each of these i look in the offspring to see what element j has been

copied in its place from P1
4. Place i into the position occupied j in P2, since we know that we will not

be putting j there (as is already in offspring)
5. If the place occupied by j in P2 has already been filled in the offspring k,

put i in the position occupied by k in P2
6. Having dealt with the elements from the crossover segment, the rest of

the offspring can be filled from P2.

Second child is created analogously
72

29.08.2016

17

Permutation Representations:
Partially Mapped Crossover (PMX) (2/2)

73

Permutation Representations:
Edge Recombination (1/3)
• Works by constructing a table listing which

edges are present in the two parents, if an
edge is common to both, mark with a +

• e.g. [1 2 3 4 5 6 7 8 9] and [9 3 7 8 2 6 5 1 4]

74

Permutation Representations:
Edge Recombination (2/3)
Informal procedure: once edge table is

constructed
1. Pick an initial element, entry, at random and put it in the

offspring
2. Set the variable current element = entry
3. Remove all references to current element from the table
4. Examine list for current element:

– If there is a common edge, pick that to be next element
– Otherwise pick the entry in the list which itself has the shortest list
– Ties are split at random

5. In the case of reaching an empty list:
– a new element is chosen at random

75

Permutation Representations:
Edge Recombination (3/3)

76

29.08.2016

18

Permutation Representations:
Order crossover (1/2)
• Idea is to preserve relative order that elements

occur
• Informal procedure:

– 1. Choose an arbitrary part from the first parent
– 2. Copy this part to the first child
– 3. Copy the numbers that are not in the first part, to

the first child:
• starting right from cut point of the copied part,
• using the order of the second parent
• and wrapping around at the end

– 4. Analogous for the second child, with parent roles
reversed

77

Permutation Representations:
Order crossover (2/2)
• Copy randomly selected set from first parent

• Copy rest from second parent in order
1,9,3,8,2

78

Permutation Representations:
Cycle crossover (1/2)
Basic idea:
Each allele comes from one parent together with its

position.
Informal procedure:
1. Make a cycle of alleles from P1 in the following way.

(a) Start with the first allele of P1.
(b) Look at the allele at the same position in P2.
(c) Go to the position with the same allele in P1.
(d) Add this allele to the cycle.
(e) Repeat step b through d until you arrive at the first allele of P1.

2. Put the alleles of the cycle in the first child on the
positions they have in the first parent.

3. Take next cycle from second parent
79

Permutation Representations:
Cycle crossover (2/2)

• Step 1: identify cycles

• Step 2: copy alternate cycles into offspring

80

29.08.2016

19

Tree Representation (1/5)

• Trees are a universal form, e.g. consider

• Arithmetic formula:

• Logical formula:

• Program:

81












15
)3(2 yx

(x  true)  ((x  y)  (z  (x  y)))

i =1;
while (i < 20)
{

i = i +1
}

Tree Representation (2/5)

82












15
)3(2 yx

Tree Representation (3/5)

83

(x  true)  ((x  y)  (z 
(x  y)))

Tree Representation (4/5)

84

i =1;
while (i < 20)
{

i = i +1
}

29.08.2016

20

Tree Representation (5/5)

• In GA, ES, EP chromosomes are linear
structures (bit strings, integer string, real-
valued vectors, permutations)

• Tree shaped chromosomes are non-linear
structures

• In GA, ES, EP the size of the chromosomes
is fixed

• Trees in GP (Genetic Programming) may
vary in depth and width

85

Tree Representation:
Mutation (1/2)
• Most common mutation: replace randomly

chosen subtree by randomly generated tree

86

Tree Representation:
Mutation (2/2)
• Mutation has two parameters:

– Probability pm to choose mutation
– Probability to chose an internal point as the root

of the subtree to be replaced
• Remarkably pm is advised to be 0 (Koza’92)

or very small, like 0.05 (Banzhaf et al. ’98)
• The size of the child can exceed the size of

the parent

87

Tree Representation: Recombination (1/2)

• Most common recombination: exchange two
randomly chosen subtrees among the
parents

• Recombination has two parameters:
– Probability pc to choose recombination
– Probability to chose an internal point within each

parent as crossover point
• The size of offspring can exceed that of the

parents
88

29.08.2016

21

Child 2

Parent 1 Parent 2

Child 1

Tree Representation: Recombination (2/2)

89

