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Repetition:
Genotype & Phenotype
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Chapter 5:
Fitness, Selection and Population Management

• Selection is second 
fundamental force for 
evolutionary systems

• Components exist of:
- Population 

management models
- Selection operators
- Preserving diversity 
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Scheme of an EA:
General scheme of EAs
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Population Management Models:
Introduction
• Two different population management models 

exist:
– Generational model

• each individual survives for exactly one generation
• the entire set of parents is replaced by the offspring

– Steady-state model
• one offspring is generated per generation
• one member of population replaced

• Generation Gap 
– The proportion of the population replaced
– Parameter = 1.0 for G-GA,  = 1/pop_size for SS-GA
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Population Management Models:
Fitness based competition
• Selection can occur in two places:

– Parent selection (selects mating pairs)
– Survivor selection (replaces population)

• Selection works on the population
-> selection operators are representation-
independent !

• Selection pressure: As selection pressure 
increases, fitter solutions are more likely to 
survive, or be chosen as parents
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Effect of Selection Pressure

• Low Pressure • High Pressure

8



Why Not Always High Selection 
Pressure?
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Exploration Exploitation



Scheme of an EA:
General scheme of EAs
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Example: roulette wheel selection

fitness(A) = 3
fitness(B) = 1
fitness(C) = 2

A C

1/6 = 17%

3/6 = 50%

B

2/6 = 33%

Parent Selection:
Fitness-Proportionate Selection
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Stochastic Universal Sampling
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Stochastic universal sampling (SUS) 
Select multiple individuals by making one spin of 
the wheel with a number of equally spaced arms



Parent Selection:
Fitness-Proportionate Selection (FPS)

• Probability for individual i to be selected for mating in a 
population size μ with FPS is 

• Problems include
– One highly fit member can rapidly take over if rest of population is 

much less fit: Premature Convergence
– At end of runs when finesses are similar, loss of selection pressure 

• Scaling can fix the last problem by:
– Windowing: 

where  is worst fitness in this (last n) generations
– Sigma Scaling: 

where c is a constant, usually 2.0
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Parent Selection:
Rank-based Selection

• Attempt to remove problems 
of FPS by basing selection 
probabilities on relative
rather than absolute fitness

• Rank population according to 
fitness and then base 
selection probabilities on rank 
(fittest has rank -1 and worst 
rank 0)

• This imposes a sorting 
overhead on the algorithm
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Rank-based Selection:
Linear Ranking

• Parameterised by factor s: 1 < s ≤ 2
– Tunes selection pressure

• Simple 3 member example
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Plinrank (i)  (2 s)


 2i(s1)
( 1)



Rank-based selection:
Exponential Ranking

• Linear Ranking is limited in selection 
pressure

• Exponential Ranking can allocate more 
than 2 copies to fittest individual

• Normalise constant factor c according to 
population size
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Pexprank (i)  1 ei

c



Parent Selection:
Tournament Selection (1/3)
• All methods above rely on global 

population statistics
– Could be a bottleneck esp. on parallel 

machines, very large population
– Relies on presence of external fitness function 

which might not exist: e.g. evolving game 
players
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Parent Selection:
Tournament Selection (2/3)
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Idea for a procedure using only local fitness 
information:

• Pick k members at random then select the best of 
these

• Repeat to select more individuals



Parent Selection:
Tournament Selection (3/3)

• Probability of selecting i will depend on:
– Rank of i
– Size of sample k

• higher k increases selection pressure
– Whether contestants are picked with 

replacement
• Picking without replacement increases selection pressure

– Whether fittest contestant always wins 
(deterministic) or this happens with probability p
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Parent Selection:
Uniform

• Parents are selected by uniform random 
distribution whenever an operator needs 
one/some 

• Uniform parent selection is unbiased - every 
individual has the same probability to be 
selected
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Puniform (i)  1




Scheme of an EA:
General scheme of EAs
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Survivor Selection (Replacement)
• From a set of μ parents and λ offspring: 

Select a set of μ individuals forming the 
next generation

• Survivor selection can be divided into two 
approaches:
– Age-Based Replacement

• Fitness is not taken into account
• In SS-GA can implement as “delete-

random” (not recommended) or as first-
in-first-out (a.k.a. delete-oldest) 

– Fitness-Based Replacement 22



Fitness-based replacement (1/2)
• Elitism

– Always keep at least one copy of the fittest solution 
so far

– Widely used in both population models (GGA, SSGA)
• Delete Worst

– The worst  individuals are replaced
• Round-robin tournament (from EP)

– Pairwise competitions in round-robin format:
• Each individual x is evaluated against q other randomly 

chosen individuals in 1-on-1 tournaments 
• For each comparison, a "win" is assigned if x is better than 

its opponent
• The  solutions with the greatest number of wins are the 

winners of the tournament
– Parameter q allows tuning selection pressure
– Typically q = 10 23



Fitness-based replacement (2/2)
(from ES)
• (,)-selection (best candidates can be lost)

- based on the set of children only ( > )
- choose the best  offspring for next 

generation
• (+)-selection (elitist strategy)

- based on the set of parents and children
- choose the best  offspring for next 

generation
• Often (,)-selection is preferred because it is 

better in leaving local optima 
24



Multimodality

Most interesting problems have more than one 
locally optimal solution.
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Multimodality

• Often might want to identify several possible 
peaks

• Different peaks may be different good ways 
to solve the problem.

• We therefore need methods to preserve 
diversity (instead of converging to one peak)
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Approaches for Preserving Diversity:
Introduction
• Explicit vs implicit
• Implicit approaches:

– Impose an equivalent of geographical separation
– Impose an equivalent of speciation

• Explicit approaches
– Make similar individuals compete for resources 

(fitness)
– Make similar individuals compete with each other 

for survival
27



Explicit Approaches for Preserving 
Diversity: Fitness Sharing (1/2)

• Restricts the number of individuals within a 
given niche by “sharing” their fitness

• Need to set the size of the niche share in 
either genotype or phenotype space

• run EA as normal but after each generation 
set
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Explicit Approaches for Preserving 
Diversity: Fitness Sharing (2/2)
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Explicit Approaches for Preserving 
Diversity: Crowding

• Idea: New individuals replace similar
individuals

• Randomly shuffle and pair parents, produce 2 
offspring

• Each offspring competes with their nearest
parent for survival (using a distance measure)

• Result: Even distribution among niches.
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Explicit Approaches for Preserving 
Diversity: Crowding vs Fitness sharing

Observe the number of individuals per niche 31

Fitness 
Sharing

Crowding



Implicit Approaches for Preserving 
Diversity: Automatic Speciation

• Either only mate with 
genotypically / 
phenotypically similar 
members or 

• Add species-tags to 
genotype
– initially randomly set 
– when selecting partner 

for recombination, only 
pick members with a 
good match
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Implicit Approaches for Preserving 
Diversity: “Island” Model Parallel EAs 

Periodic migration of individual solutions between populations

EA
EA

EA EA

EA
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Implicit Approaches for Preserving 
Diversity: “Island” Model Parallel EAs 
• Run multiple populations in parallel 
• After a (usually fixed) number of generations 

(an Epoch), exchange individuals with 
neighbours

• Repeat until ending criteria met
• Partially inspired by parallel/clustered 

systems

34



Chapter 6:
Popular Evolutionary Algorithm Variants
Historical EA variants:
• Genetic Algorithms
• Evolution Strategies
• Evolutionary Programming
• Genetic Programming

35

Algorithm Chromosome 
Representation

Crossover Mutation 

Genetic Algorithm (GA) Array X X 
Genetic Programming (GP)  Tree X X 
Evolution Strategies (ES) Array (X) X 
Evolutionary Programming (EP) No constraints - X 
 



Genetic Algorithms:
Overview Simple GA
• Developed: USA in the 1960’s
• Early names: Holland, DeJong, Goldberg
• Typically applied to:

– discrete function optimization
– benchmark for comparison with other algorithms
– straightforward problems with binary representation

• Features:
– not too fast
– missing new variants (elitism, sus)
– often modelled by theorists

36



Genetic Algorithms:
Overview Simple GA (2/2)
• Holland’s original GA is now known as the 

simple genetic algorithm (SGA)
• Other GAs use different:

– Representations
– Mutations
– Crossovers
– Selection mechanisms

37



Genetic Algorithms:
SGA reproduction cycle
• Select parents for the mating pool 

(size of mating pool = population size)
• Shuffle the mating pool
• Apply crossover for each consecutive pair 

with probability pc, otherwise copy parents
• Apply mutation for each offspring (bit-flip 

with probability pm independently for each bit)
• Replace the whole population with the 

resulting offspring
38



Genetic Algorithms:
An example after Goldberg ’89 
• Simple problem: max x2 over {0,1,…,31}
• GA approach:

– Representation: binary code, e.g., 01101  13
– Population size: 4
– 1-point x-over, bitwise mutation 
– Roulette wheel selection
– Random initialisation

• We show one generational cycle done by 
hand 
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X2 example: Selection

40



X2 example: Crossover
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X2 example: Mutation
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Genetic Algorithms:
The simple GA
• Has been subject of many (early) studies

– still often used as benchmark for novel GAs
• Shows many shortcomings, e.g.,

– Representation is too restrictive
– Mutation & crossover operators only applicable 

for bit-string & integer representations
– Selection mechanism sensitive for converging 

populations with close fitness values
– Generational population model can be improved 

with explicit survivor selection
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Genetic Algorithms:
Simple GA (SGA) summary

Representation Bit-strings
Recombination 1-Point crossover
Mutation Bit flip
Parent selection Fitness proportional – implemented

by Roulette Wheel
Survivor selection Generational
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Evolution Strategies:
Quick overview
• Developed: Germany in the 1960’s by  Rechenberg

and Schwefel
• Typically applied to numerical optimisation
• Attributed features:

– fast
– good optimizer for real-valued optimisation
– relatively much theory

• Special:
– self-adaptation of (mutation) parameters standard

45



Evolution Strategies:
Example (1+1) ES

• Task: minimise f : Rn  R
• Algorithm: “two-membered ES” using 

– Vectors from Rn directly as chromosomes
– Population size 1
– Only mutation creating one child
– Greedy selection 

46



Evolution Strategies:
Representation
• Chromosomes consist of two parts:

– Object variables: x1,…,xn
– Strategy parameters (mutation rate, etc): 

p1,…,pm

• Full size:  x1,…,xn, p1,…,pn 
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Evolution Strategies: Adaptive 
Mutation

• z values drawn from 
normal distribution 
N(,) 
– mean  is set to 0 
– variation  is called 

mutation step size
•  is varied on the fly by 

the “1/5 success rule”
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The “1/5 success rule”

• Goal: Balance exploration 
and exploitation

• Resets  after every k 
iterations by
–  =  / c if ps > 1/5
–  =  • c if ps < 1/5
–  =  if ps = 1/5

• where ps is the % of 
successful mutations,  0.8 
 c  1
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Evolution Strategies:
Self-adaptation illustrated (1/2)
• Given a dynamically changing fitness 

landscape (optimum location shifted every 
200 generations)

• Self-adaptive ES is able to 
– follow the optimum and 
– adjust the mutation step size after every shift !
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Evolution Strategies:
Self-adaptation illustrated cont’d (2/2)
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Evolution Strategies:
Parent selection

• Parents are selected by uniform random 
distribution whenever an operator needs 
one/some 

• Thus: ES parent selection is unbiased - every 
individual has the same probability to be 
selected
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Evolution Strategies:
Recombination
• Two parents create one child
• Acts per variable / position by either

– Averaging parental values, or
– Selecting one of the parental values

• From two or more parents by either:
– Local recombination: Two parents make a child
– Global recombination: Selecting two parents 

randomly for each gene
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Evolution Strategies:
Names of recombinations

Two fixed 
parents

Two parents 
selected for 
each i

zi = (xi + yi)/2 Local 
intermediary

Global 
intermediary

zi is xi or yi
chosen 
randomly 

Local discrete Global discrete
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Evolution Strategies:
ES summary

Representation Real-valued vectors
Recombination Discrete or intermediary
Mutation Gaussian perturbation
Parent selection Uniform random
Survivor selection (,) or (+)
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Evolutionary Programming:
Quick overview
• Developed: USA in the 1960’s by Fogel et al.
• Typically applied to:

– traditional EP: prediction by finite state machines
– contemporary EP: (numerical) optimization 

• Attributed features:
– very open framework: any representation and 

mutation op’s OK
– Contemporary EP has almost merged with ES

• Special:
– no recombination
– self-adaptation of parameters standard (contemporary 

EP) 56



Evolutionary Programming:
Representation 

• For continuous parameter optimisation
• Chromosomes consist of two parts:

– Object variables: x1,…,xn

– Mutation step sizes: 1,…,n

• Full size:  x1,…,xn,1,…,n 
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Evolutionary Programming:
Recombination 
• None
• Rationale: one 

point in the search 
space stands for a 
species, not for an 
individual and 
there can be no 
crossover between 
species
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Evolutionary Programming:
Selection
• Each individual creates one child by mutation

– Deterministic
– Not biased by fitness

• Parents and offspring compete for survival in 
round-robin tournaments.
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Evolutionary Programming:
Evolving checkers player (Fogel’02) (1/2)

• Neural nets for evaluating 
future values of moves are 
evolved

• NNs have fixed structure with 
5046 weights, these are 
evolved

• Representation: 
– vector of 5046 real numbers for 

NN weights
• Population size 15
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Evolutionary Programming:
Evolving checkers player (Fogel’02) (2/2)
• Tournament size q = 5
• Programs (with NN inside) play against other 

programs, no human trainer 
• After 840 generation (6 months!) best 

strategy was tested against humans
• Program earned “expert class” ranking 

outperforming 99.61% of all rated players 
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Evolutionary Programming:
Summary

Representation Real-valued vectors
Recombination None
Mutation Gaussian perturbation
Parent selection Deterministic (each parent one

offspring)
Survivor selection Probabilistic (+)
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Genetic Programming:
Quick overview
• Developed: USA in the 1990’s by Koza
• Typically applied to:

– machine learning tasks (prediction, classification…)
• Attributed features:

– “automatic evolution of computer programs”
– needs huge populations (thousands)
– slow

• Special:
– non-linear chromosomes: trees
– mutation possible but not necessary 
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Genetic Programming:
Initialisation
• Maximum initial depth of trees Dmax is set
• Full method (each branch has depth = Dmax):

– nodes at depth d < Dmax randomly chosen from 
function set F (IF, AND, =, >, *, etc.)

– nodes at depth d = Dmax randomly chosen from 
terminal set T (x,y,5000,NOC, etc.)

• Grow method (each branch has depth  Dmax):
– nodes at depth d < Dmax randomly chosen from F  T
– nodes at depth d = Dmax randomly chosen from T

• Common GP initialisation: ramped half-and-half, 
where grow & full method each deliver half of 
initial population

64



Genetic Programming:
Full Initialisation to depth 2
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Source: www.gp-field-guide.org.uk



Genetic Programming:
Grow Initialisation to depth 2
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Source: www.gp-field-guide.org.uk



Genetic Programming: Variation 
Operators
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Genetic Programming: Mutation

• Most common mutation: replace randomly 
chosen subtree by randomly generated tree
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Child 2

Parent 1 Parent 2

Child 1

Genetic Programming: Recombination
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Genetic Programming:
Bloat
• Average tree sizes 

in the population 
tend to increase 
over time

• Countermeasures:
– Maximum tree size
– Parsimony 

pressure: penalty 
for being oversized
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Genetic Programming:
Summary

Representation Tree structures
Recombination Exchange of subtrees
Mutation Random change in trees
Parent selection Fitness proportional
Survivor selection Generational replacement
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Summary: The standard EA variants
Name Representation Crossover Mutation Parent 

selection
Survivor 
selection

Specialty

Genetic 
Algorithm Usually fixed-length 

vector Any or none Any Any Any None

Evolution
Strategies Real-valued vector

Discrete or 
intermediate 

recombination
Gaussian Random draw Best N Strategy 

parameters

Evolutionary 
Programming Real-valued vector None Gaussian One child each Tournament Strategy 

parameters

Genetic 
Programming Tree Swap sub-tree Replace 

sub-tree
Usually fitness 

proportional
Generational 
replacement None
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Particle Swarm Optimisation:
Quick overview

• Developed: in 1995 by 
Kennedy and Eberhart

• Inspired by social 
behavior of bird 
flocking/fish schooling
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Particle Swarm Optimisation:
Representation (1/2)
• Every population member can be considered 

as a pair
where the first vector is  candidate 

solution and the second one a perturbation 
vector in IRn

• The perturbation vector determines how the 
solution vector is changed to produce a new 
one:

, where    is calculated from    and 
some additional information
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x, p

x '  x  p '
p ' p



Particle Swarm Optimisation:
Representation (2/2)
• A member is a point in space with a position and 

a velocity 
• The perturbation is defined as the weighted sum 

of three components:
– Current perturbation vector 
– Vector difference current position to best 

position of member so far
– Vector difference from current position to best 

position of population so far
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Image source: http://wirelesstechthoughts.blogspot.no/



A Reminder about Search Landscapes
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Image source: Randy Olson, wikipedia



PSO: Velocity and Position Update
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Image source: Hassan et al. 2004: A COPMARISON OF PARTICLE SWARM OPTIMIZATION AND THE GENETIC ALGORITHM



Particle Swarm Optimisation:
Example moving target

• Optimum moves randomly
• Particles do not know position of optimum but do know 

which particle is closest and are attracted to that one
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Particle Swarm Optimisation:
Summary

Representation Real-valued vectors
Recombination None
Mutation Adding velocity vector
Parent selection Deterministic (each parent 

creates one offspring via 
mutation)

Survivor selection Generational (offspring replaces 
parents)
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