
INF3490 - Biologically inspired computing

Lecture 3: Eiben and Smith, chapter 5-6

Evolutionary Algorithms -
Population management and

popular algorithms
Kai Olav Ellefsen

Repetition:
General scheme of EAs

2

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination

Repetition:
Genotype & Phenotype

3

1 23 45 6 7 8

Genotype:
A solution representation
applicable to variation

Phenotype:
A solution representation
we can evaluate

Decoding

Chapter 5:
Fitness, Selection and Population Management

• Selection is second
fundamental force for
evolutionary systems

• Components exist of:
- Population

management models
- Selection operators
- Preserving diversity

4

Variation

Selection

Scheme of an EA:
General scheme of EAs

5

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination

Population Management Models:
Introduction
• Two different population management models

exist:
– Generational model

• each individual survives for exactly one generation
• the entire set of parents is replaced by the offspring

– Steady-state model
• one offspring is generated per generation
• one member of population replaced

• Generation Gap
– The proportion of the population replaced
– Parameter = 1.0 for G-GA, = 1/pop_size for SS-GA

6

Population Management Models:
Fitness based competition
• Selection can occur in two places:

– Parent selection (selects mating pairs)
– Survivor selection (replaces population)

• Selection works on the population
-> selection operators are representation-
independent !

• Selection pressure: As selection pressure
increases, fitter solutions are more likely to
survive, or be chosen as parents

7

Effect of Selection Pressure

• Low Pressure • High Pressure

8

Why Not Always High Selection
Pressure?

9

Exploration Exploitation

Scheme of an EA:
General scheme of EAs

10

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination

Example: roulette wheel selection

fitness(A) = 3
fitness(B) = 1
fitness(C) = 2

A C

1/6 = 17%

3/6 = 50%

B

2/6 = 33%

Parent Selection:
Fitness-Proportionate Selection

11

Stochastic Universal Sampling

12

Stochastic universal sampling (SUS)
Select multiple individuals by making one spin of
the wheel with a number of equally spaced arms

Parent Selection:
Fitness-Proportionate Selection (FPS)

• Probability for individual i to be selected for mating in a
population size μ with FPS is

• Problems include
– One highly fit member can rapidly take over if rest of population is

much less fit: Premature Convergence
– At end of runs when finesses are similar, loss of selection pressure

• Scaling can fix the last problem by:
– Windowing:

where  is worst fitness in this (last n) generations
– Sigma Scaling:

where c is a constant, usually 2.0
13

PFPS (i)  fi f j
j1





f '(i)  f (i) t

f '(i)  max(f (i) (f  c f), 0)

Parent Selection:
Rank-based Selection

• Attempt to remove problems
of FPS by basing selection
probabilities on relative
rather than absolute fitness

• Rank population according to
fitness and then base
selection probabilities on rank
(fittest has rank -1 and worst
rank 0)

• This imposes a sorting
overhead on the algorithm

14

Rank-based Selection:
Linear Ranking

• Parameterised by factor s: 1 < s ≤ 2
– Tunes selection pressure

• Simple 3 member example

15

Plinrank (i)  (2 s)


 2i(s1)
( 1)

Rank-based selection:
Exponential Ranking

• Linear Ranking is limited in selection
pressure

• Exponential Ranking can allocate more
than 2 copies to fittest individual

• Normalise constant factor c according to
population size

16

Pexprank (i)  1 ei

c

Parent Selection:
Tournament Selection (1/3)
• All methods above rely on global

population statistics
– Could be a bottleneck esp. on parallel

machines, very large population
– Relies on presence of external fitness function

which might not exist: e.g. evolving game
players

17

Parent Selection:
Tournament Selection (2/3)

18

Idea for a procedure using only local fitness
information:

• Pick k members at random then select the best of
these

• Repeat to select more individuals

Parent Selection:
Tournament Selection (3/3)

• Probability of selecting i will depend on:
– Rank of i
– Size of sample k

• higher k increases selection pressure
– Whether contestants are picked with

replacement
• Picking without replacement increases selection pressure

– Whether fittest contestant always wins
(deterministic) or this happens with probability p

19

Parent Selection:
Uniform

• Parents are selected by uniform random
distribution whenever an operator needs
one/some

• Uniform parent selection is unbiased - every
individual has the same probability to be
selected

20

Puniform (i)  1


Scheme of an EA:
General scheme of EAs

21

Population

Parents
Parent selection

Survivor selection
Offspring

Recombination
(crossover)

Mutation

Intialization

Termination

Survivor Selection (Replacement)
• From a set of μ parents and λ offspring:

Select a set of μ individuals forming the
next generation

• Survivor selection can be divided into two
approaches:
– Age-Based Replacement

• Fitness is not taken into account
• In SS-GA can implement as “delete-

random” (not recommended) or as first-
in-first-out (a.k.a. delete-oldest)

– Fitness-Based Replacement 22

Fitness-based replacement (1/2)
• Elitism

– Always keep at least one copy of the fittest solution
so far

– Widely used in both population models (GGA, SSGA)
• Delete Worst

– The worst  individuals are replaced
• Round-robin tournament (from EP)

– Pairwise competitions in round-robin format:
• Each individual x is evaluated against q other randomly

chosen individuals in 1-on-1 tournaments
• For each comparison, a "win" is assigned if x is better than

its opponent
• The  solutions with the greatest number of wins are the

winners of the tournament
– Parameter q allows tuning selection pressure
– Typically q = 10 23

Fitness-based replacement (2/2)
(from ES)
• (,)-selection (best candidates can be lost)

- based on the set of children only ( > )
- choose the best  offspring for next

generation
• (+)-selection (elitist strategy)

- based on the set of parents and children
- choose the best  offspring for next

generation
• Often (,)-selection is preferred because it is

better in leaving local optima
24

Multimodality

Most interesting problems have more than one
locally optimal solution.

25

Multimodality

• Often might want to identify several possible
peaks

• Different peaks may be different good ways
to solve the problem.

• We therefore need methods to preserve
diversity (instead of converging to one peak)

26

Approaches for Preserving Diversity:
Introduction
• Explicit vs implicit
• Implicit approaches:

– Impose an equivalent of geographical separation
– Impose an equivalent of speciation

• Explicit approaches
– Make similar individuals compete for resources

(fitness)
– Make similar individuals compete with each other

for survival
27

Explicit Approaches for Preserving
Diversity: Fitness Sharing (1/2)

• Restricts the number of individuals within a
given niche by “sharing” their fitness

• Need to set the size of the niche share in
either genotype or phenotype space

• run EA as normal but after each generation
set




 

1
)),((

)()('

j
jidsh

ifif sh(d) 
1 d / d 

0 otherwise









28

Explicit Approaches for Preserving
Diversity: Fitness Sharing (2/2)




 

1
)),((

)()('

j
jidsh

ifif sh(d) 
1 d / d 

0 otherwise









29

Explicit Approaches for Preserving
Diversity: Crowding

• Idea: New individuals replace similar
individuals

• Randomly shuffle and pair parents, produce 2
offspring

• Each offspring competes with their nearest
parent for survival (using a distance measure)

• Result: Even distribution among niches.

30

Explicit Approaches for Preserving
Diversity: Crowding vs Fitness sharing

Observe the number of individuals per niche 31

Fitness
Sharing

Crowding

Implicit Approaches for Preserving
Diversity: Automatic Speciation

• Either only mate with
genotypically /
phenotypically similar
members or

• Add species-tags to
genotype
– initially randomly set
– when selecting partner

for recombination, only
pick members with a
good match

32

Implicit Approaches for Preserving
Diversity: “Island” Model Parallel EAs

Periodic migration of individual solutions between populations

EA
EA

EA EA

EA

33

Implicit Approaches for Preserving
Diversity: “Island” Model Parallel EAs
• Run multiple populations in parallel
• After a (usually fixed) number of generations

(an Epoch), exchange individuals with
neighbours

• Repeat until ending criteria met
• Partially inspired by parallel/clustered

systems

34

Chapter 6:
Popular Evolutionary Algorithm Variants
Historical EA variants:
• Genetic Algorithms
• Evolution Strategies
• Evolutionary Programming
• Genetic Programming

35

Algorithm Chromosome
Representation

Crossover Mutation

Genetic Algorithm (GA) Array X X
Genetic Programming (GP) Tree X X
Evolution Strategies (ES) Array (X) X
Evolutionary Programming (EP) No constraints - X

Genetic Algorithms:
Overview Simple GA
• Developed: USA in the 1960’s
• Early names: Holland, DeJong, Goldberg
• Typically applied to:

– discrete function optimization
– benchmark for comparison with other algorithms
– straightforward problems with binary representation

• Features:
– not too fast
– missing new variants (elitism, sus)
– often modelled by theorists

36

Genetic Algorithms:
Overview Simple GA (2/2)
• Holland’s original GA is now known as the

simple genetic algorithm (SGA)
• Other GAs use different:

– Representations
– Mutations
– Crossovers
– Selection mechanisms

37

Genetic Algorithms:
SGA reproduction cycle
• Select parents for the mating pool

(size of mating pool = population size)
• Shuffle the mating pool
• Apply crossover for each consecutive pair

with probability pc, otherwise copy parents
• Apply mutation for each offspring (bit-flip

with probability pm independently for each bit)
• Replace the whole population with the

resulting offspring
38

Genetic Algorithms:
An example after Goldberg ’89
• Simple problem: max x2 over {0,1,…,31}
• GA approach:

– Representation: binary code, e.g., 01101  13
– Population size: 4
– 1-point x-over, bitwise mutation
– Roulette wheel selection
– Random initialisation

• We show one generational cycle done by
hand

39

X2 example: Selection

40

X2 example: Crossover

41

X2 example: Mutation

42

Genetic Algorithms:
The simple GA
• Has been subject of many (early) studies

– still often used as benchmark for novel GAs
• Shows many shortcomings, e.g.,

– Representation is too restrictive
– Mutation & crossover operators only applicable

for bit-string & integer representations
– Selection mechanism sensitive for converging

populations with close fitness values
– Generational population model can be improved

with explicit survivor selection

43

Genetic Algorithms:
Simple GA (SGA) summary

Representation Bit-strings
Recombination 1-Point crossover
Mutation Bit flip
Parent selection Fitness proportional – implemented

by Roulette Wheel
Survivor selection Generational

44

Evolution Strategies:
Quick overview
• Developed: Germany in the 1960’s by Rechenberg

and Schwefel
• Typically applied to numerical optimisation
• Attributed features:

– fast
– good optimizer for real-valued optimisation
– relatively much theory

• Special:
– self-adaptation of (mutation) parameters standard

45

Evolution Strategies:
Example (1+1) ES

• Task: minimise f : Rn  R
• Algorithm: “two-membered ES” using

– Vectors from Rn directly as chromosomes
– Population size 1
– Only mutation creating one child
– Greedy selection

46

Evolution Strategies:
Representation
• Chromosomes consist of two parts:

– Object variables: x1,…,xn
– Strategy parameters (mutation rate, etc):

p1,…,pm

• Full size:  x1,…,xn, p1,…,pn 

47

Evolution Strategies: Adaptive
Mutation

• z values drawn from
normal distribution
N(,)
– mean  is set to 0
– variation  is called

mutation step size
•  is varied on the fly by

the “1/5 success rule”

48

The “1/5 success rule”

• Goal: Balance exploration
and exploitation

• Resets  after every k
iterations by
–  =  / c if ps > 1/5
–  =  • c if ps < 1/5
–  =  if ps = 1/5

• where ps is the % of
successful mutations, 0.8
 c  1

49

Evolution Strategies:
Self-adaptation illustrated (1/2)
• Given a dynamically changing fitness

landscape (optimum location shifted every
200 generations)

• Self-adaptive ES is able to
– follow the optimum and
– adjust the mutation step size after every shift !

50

Evolution Strategies:
Self-adaptation illustrated cont’d (2/2)

51

Evolution Strategies:
Parent selection

• Parents are selected by uniform random
distribution whenever an operator needs
one/some

• Thus: ES parent selection is unbiased - every
individual has the same probability to be
selected

52

Evolution Strategies:
Recombination
• Two parents create one child
• Acts per variable / position by either

– Averaging parental values, or
– Selecting one of the parental values

• From two or more parents by either:
– Local recombination: Two parents make a child
– Global recombination: Selecting two parents

randomly for each gene

53

Evolution Strategies:
Names of recombinations

Two fixed
parents

Two parents
selected for
each i

zi = (xi + yi)/2 Local
intermediary

Global
intermediary

zi is xi or yi
chosen
randomly

Local discrete Global discrete

54

Evolution Strategies:
ES summary

Representation Real-valued vectors
Recombination Discrete or intermediary
Mutation Gaussian perturbation
Parent selection Uniform random
Survivor selection (,) or (+)

55

Evolutionary Programming:
Quick overview
• Developed: USA in the 1960’s by Fogel et al.
• Typically applied to:

– traditional EP: prediction by finite state machines
– contemporary EP: (numerical) optimization

• Attributed features:
– very open framework: any representation and

mutation op’s OK
– Contemporary EP has almost merged with ES

• Special:
– no recombination
– self-adaptation of parameters standard (contemporary

EP) 56

Evolutionary Programming:
Representation

• For continuous parameter optimisation
• Chromosomes consist of two parts:

– Object variables: x1,…,xn

– Mutation step sizes: 1,…,n

• Full size:  x1,…,xn,1,…,n 

57

Evolutionary Programming:
Recombination
• None
• Rationale: one

point in the search
space stands for a
species, not for an
individual and
there can be no
crossover between
species

58

Evolutionary Programming:
Selection
• Each individual creates one child by mutation

– Deterministic
– Not biased by fitness

• Parents and offspring compete for survival in
round-robin tournaments.

59

Evolutionary Programming:
Evolving checkers player (Fogel’02) (1/2)

• Neural nets for evaluating
future values of moves are
evolved

• NNs have fixed structure with
5046 weights, these are
evolved

• Representation:
– vector of 5046 real numbers for

NN weights
• Population size 15

60

Evolutionary Programming:
Evolving checkers player (Fogel’02) (2/2)
• Tournament size q = 5
• Programs (with NN inside) play against other

programs, no human trainer
• After 840 generation (6 months!) best

strategy was tested against humans
• Program earned “expert class” ranking

outperforming 99.61% of all rated players

61

Evolutionary Programming:
Summary

Representation Real-valued vectors
Recombination None
Mutation Gaussian perturbation
Parent selection Deterministic (each parent one

offspring)
Survivor selection Probabilistic (+)

62

Genetic Programming:
Quick overview
• Developed: USA in the 1990’s by Koza
• Typically applied to:

– machine learning tasks (prediction, classification…)
• Attributed features:

– “automatic evolution of computer programs”
– needs huge populations (thousands)
– slow

• Special:
– non-linear chromosomes: trees
– mutation possible but not necessary

63

Genetic Programming:
Initialisation
• Maximum initial depth of trees Dmax is set
• Full method (each branch has depth = Dmax):

– nodes at depth d < Dmax randomly chosen from
function set F (IF, AND, =, >, *, etc.)

– nodes at depth d = Dmax randomly chosen from
terminal set T (x,y,5000,NOC, etc.)

• Grow method (each branch has depth  Dmax):
– nodes at depth d < Dmax randomly chosen from F  T
– nodes at depth d = Dmax randomly chosen from T

• Common GP initialisation: ramped half-and-half,
where grow & full method each deliver half of
initial population

64

Genetic Programming:
Full Initialisation to depth 2

65

Source: www.gp-field-guide.org.uk

Genetic Programming:
Grow Initialisation to depth 2

66

Source: www.gp-field-guide.org.uk

Genetic Programming: Variation
Operators

67

Genetic Programming: Mutation

• Most common mutation: replace randomly
chosen subtree by randomly generated tree

68

Child 2

Parent 1 Parent 2

Child 1

Genetic Programming: Recombination

69

Genetic Programming:
Bloat
• Average tree sizes

in the population
tend to increase
over time

• Countermeasures:
– Maximum tree size
– Parsimony

pressure: penalty
for being oversized

70

Genetic Programming:
Summary

Representation Tree structures
Recombination Exchange of subtrees
Mutation Random change in trees
Parent selection Fitness proportional
Survivor selection Generational replacement

71

Summary: The standard EA variants
Name Representation Crossover Mutation Parent

selection
Survivor
selection

Specialty

Genetic
Algorithm Usually fixed-length

vector Any or none Any Any Any None

Evolution
Strategies Real-valued vector

Discrete or
intermediate

recombination
Gaussian Random draw Best N Strategy

parameters

Evolutionary
Programming Real-valued vector None Gaussian One child each Tournament Strategy

parameters

Genetic
Programming Tree Swap sub-tree Replace

sub-tree
Usually fitness

proportional
Generational
replacement None

72

Particle Swarm Optimisation:
Quick overview

• Developed: in 1995 by
Kennedy and Eberhart

• Inspired by social
behavior of bird
flocking/fish schooling

73

Particle Swarm Optimisation:
Representation (1/2)
• Every population member can be considered

as a pair
where the first vector is candidate

solution and the second one a perturbation
vector in IRn

• The perturbation vector determines how the
solution vector is changed to produce a new
one:

, where is calculated from and
some additional information

74

x, p

x '  x  p '
p ' p

Particle Swarm Optimisation:
Representation (2/2)
• A member is a point in space with a position and

a velocity
• The perturbation is defined as the weighted sum

of three components:
– Current perturbation vector
– Vector difference current position to best

position of member so far
– Vector difference from current position to best

position of population so far

75

Image source: http://wirelesstechthoughts.blogspot.no/

A Reminder about Search Landscapes

76

Image source: Randy Olson, wikipedia

PSO: Velocity and Position Update

77

Image source: Hassan et al. 2004: A COPMARISON OF PARTICLE SWARM OPTIMIZATION AND THE GENETIC ALGORITHM

Particle Swarm Optimisation:
Example moving target

• Optimum moves randomly
• Particles do not know position of optimum but do know

which particle is closest and are attracted to that one

78

Particle Swarm Optimisation:
Summary

Representation Real-valued vectors
Recombination None
Mutation Adding velocity vector
Parent selection Deterministic (each parent

creates one offspring via
mutation)

Survivor selection Generational (offspring replaces
parents)

79

