

INF3490 - Biologically inspired computing

Lecture 3: Eiben and Smith, chapter 5-6

Evolutionary Algorithms -Population management and popular algorithms Kai Olav Ellefsen

Repetition: General scheme of EAs

Repetition: Genotype & Phenotype

Phenotype: A solution representation we can **evaluate**

Genotype: A solution representation applicable to **variation**

Chapter 5: Fitness, Selection and Population Management

- Selection is second fundamental force for evolutionary systems
- Components exist of:
 - Population management models
 - Selection operators
 - Preserving diversity

Scheme of an EA: General scheme of EAs

Population Management Models: Introduction

Two different population management models exist:

Generational model

- · each individual survives for exactly one generation
- the entire set of parents is replaced by the offspring

– Steady-state model

- one offspring is generated per generation
- one member of population replaced
- Generation Gap
 - The proportion of the population replaced
 - Parameter = 1.0 for G-GA, = 1/pop_size for SS-GA

Population Management Models: Fitness based competition

- Selection can occur in two places:
 - **Parent selection** (selects mating pairs)
 - **Survivor selection** (replaces population)
- Selection works on the population

-> selection operators are representationindependent !

• Selection pressure: As selection pressure increases, fitter solutions are more likely to survive, or be chosen as parents

Effect of Selection Pressure

Low Pressure

• High Pressure

Why Not Always High Selection Pressure?

Parent Selection: Fitness-Proportionate Selection

Stochastic Universal Sampling

Stochastic universal sampling (SUS)

Select multiple individuals by making **one** spin of the wheel with **a number of equally spaced arms**

Parent Selection: Fitness-Proportionate Selection (FPS)

• Probability for individual *i* to be selected for mating in a population size μ with FPS is

$$P_{FPS}(i) = f_i / \sum_{j=1}^{\mu} f_j$$

- Problems include
 - One highly fit member can rapidly take over if rest of population is much less fit: Premature Convergence
 - At end of runs when finesses are similar, loss of selection pressure
- Scaling can fix the last problem by:

– Windowing:
$$f'(i) = f(i) - \beta^t$$

where β is worst fitness in this (last n) generations

- Sigma Scaling:
$$f'(i) = \max(f(i) - (\overline{f} - c \bullet \sigma_f), 0)$$

where c is a constant, usually 2.0

Parent Selection: Rank-based Selection

- Attempt to remove problems of FPS by basing selection probabilities on *relative* rather than absolute fitness
- Rank population according to fitness and then base selection probabilities on rank (fittest has rank μ-1 and worst rank 0)
- This imposes a sorting overhead on the algorithm

Rank-based Selection: Linear Ranking

$$P_{lin-rank}(i) = \frac{(2-s)}{\mu} + \frac{2i(s-1)}{\mu(\mu-1)}$$

• Parameterised by factor s: $1 < s \le 2$

Tunes selection pressure

• Simple 3 member example

Individual	Fitness	Rank	P_{selFP}	P_{selLR} $(s=2)$	P_{selLR} (s = 1.5)
Α	1	0	0.1	0	0.167
в	4	1	0.4	0.33	0.33
С	5	2	0.5	0.67	0.5
Sum	10		1.0	1.0	1.0

Rank-based selection: Exponential Ranking

$$P_{\exp-rank}(i) = \frac{1 - e^{-i}}{c}$$

- Linear Ranking is limited in selection pressure
- Exponential Ranking can allocate more than 2 copies to fittest individual
- Normalise constant factor c according to population size

Parent Selection: Tournament Selection (1/3)

- All methods above rely on global population statistics
 - Could be a bottleneck esp. on parallel machines, very large population
 - Relies on presence of external fitness function which might not exist: e.g. evolving game players

Parent Selection: Tournament Selection (2/3)

Idea for a procedure using only local fitness information:

- Pick k members at random then select the best of these
- Repeat to select more individuals

Parent Selection: Tournament Selection (3/3)

- Probability of selecting *i* will depend on:
 - Rank of *i*
 - Size of sample k
 - higher k increases selection pressure
 - Whether contestants are picked with replacement
 - Picking without replacement increases selection pressure
 - Whether fittest contestant always wins (deterministic) or this happens with probability p

Parent Selection: Uniform

$$P_{uniform}(i) = \frac{1}{\mu}$$

- Parents are selected by uniform random distribution whenever an operator needs one/some
- Uniform parent selection is unbiased every individual has the same probability to be selected

Scheme of an EA: General scheme of EAs

Survivor Selection (Replacement)

- From a set of µ parents and λ offspring: Select a set of µ individuals forming the next generation
- Survivor selection can be divided into two approaches:
 - Age-Based Replacement
 - Fitness is not taken into account
 - In SS-GA can implement as "deleterandom" (not recommended) or as firstin-first-out (a.k.a. delete-oldest)
 - Fitness-Based Replacement

Fitness-based replacement (1/2)

- Elitism
 - Always keep at least one copy of the fittest solution so far
 - Widely used in both population models (GGA, SSGA)
- Delete Worst
 - The worst λ individuals are replaced
- Round-robin tournament (from EP)
 - Pairwise competitions in round-robin format:
 - Each individual x is **evaluated against q other** randomly chosen individuals in 1-on-1 tournaments
 - For each comparison, a "win" is assigned if x is better than its opponent
 - The μ solutions with the greatest number of wins are the winners of the tournament
 - Parameter q allows tuning selection pressure
 - Typically q = 10

Fitness-based replacement (2/2) (from ES)

- (μ, λ) -selection (best candidates can be lost)
 - based on the set of **children only** ($\lambda > \mu$)
 - choose the **best** μ offspring for next generation
- $(\mu + \lambda)$ -selection (elitist strategy)
 - based on the set of parents and children
 - choose the **best** μ offspring for next generation
- Often (μ , λ)-selection is preferred because it is better in leaving local optima

Multimodality

Most interesting problems have more than one locally optimal solution.

Multimodality

- Often might want to identify several possible peaks
- Different peaks may be different good ways to solve the problem.
- We therefore need methods to preserve diversity (instead of converging to one peak)

Approaches for Preserving Diversity: Introduction

- Explicit vs implicit
- Implicit approaches:
 - Impose an equivalent of geographical separation
 - Impose an equivalent of speciation
- Explicit approaches
 - Make similar individuals compete for resources (fitness)
 - Make similar individuals compete with each other for survival

Explicit Approaches for Preserving Diversity: Fitness Sharing (1/2)

- Restricts the number of individuals within a given niche by "sharing" their fitness
- Need to set the size of the niche σ_{share} in either genotype or phenotype space
- run EA as normal but after each generation set

$$f'(i) = \frac{f(i)}{\sum_{j=1}^{\mu} sh(d(i,j))} \quad sh(d) = \begin{cases} 1 - d/\sigma & d \le \sigma \\ 0 & otherwise \end{cases}$$

Explicit Approaches for Preserving Diversity: Fitness Sharing (2/2)

$$f'(i) = \frac{f(i)}{\sum_{j=1}^{\mu} sh(d(i, j))} \quad sh(d) = \begin{cases} 1 - d/\sigma & d \le \sigma \\ 0 & otherwise \end{cases}$$

Explicit Approaches for Preserving Diversity: Crowding

- Idea: New individuals replace similar individuals
- Randomly shuffle and pair parents, produce 2 offspring
- Each offspring competes with their **nearest** parent for survival (using a distance measure)
- Result: Even distribution among niches.

Explicit Approaches for Preserving Diversity: Crowding vs Fitness sharing

Implicit Approaches for Preserving Diversity: Automatic Speciation

- Either only mate with genotypically / phenotypically similar members or
- Add species-tags to genotype
 - initially randomly set
 - when selecting partner for recombination, only pick members with a good match

Implicit Approaches for Preserving Diversity: "Island" Model Parallel EAs

Periodic migration of individual solutions between populations

Implicit Approaches for Preserving Diversity: "Island" Model Parallel EAs

- Run multiple populations in parallel
- After a (usually fixed) number of generations (an *Epoch*), exchange individuals with neighbours
- Repeat until ending criteria met
- Partially inspired by parallel/clustered systems

Chapter 6: Popular Evolutionary Algorithm Variants

Historical EA variants:

- Genetic Algorithms
- Evolution Strategies
- Evolutionary Programming
- Genetic Programming

Algorithm	Chromosome Representation	Crossover	Mutation
Genetic Algorithm (GA)	Array	Х	Х
Genetic Programming (GP)	Tree	Х	Х
Evolution Strategies (ES)	Array	(X)	Х
Evolutionary Programming (EP)	No constraints	-	Х

Genetic Algorithms: Overview Simple GA

- Developed: USA in the 1960's
- Early names: Holland, DeJong, Goldberg
- Typically applied to:
 - discrete function optimization
 - benchmark for comparison with other algorithms
 - straightforward problems with binary representation
- Features:
 - not too fast
 - missing new variants (elitism, sus)
 - often modelled by theorists
Genetic Algorithms: Overview Simple GA (2/2)

- Holland's original GA is now known as the simple genetic algorithm (SGA)
- Other GAs use different:
 - Representations
 - Mutations
 - Crossovers
 - Selection mechanisms

Genetic Algorithms: SGA reproduction cycle

- Select parents for the mating pool (size of mating pool = population size)
- Shuffle the mating pool
- Apply crossover for each consecutive pair with probability p_c , otherwise copy parents
- **Apply mutation** for each offspring (bit-flip with probability p_m independently for each bit)
- Replace the whole population with the resulting offspring

Genetic Algorithms: An example after Goldberg '89

- Simple problem: max x^2 over $\{0, 1, \dots, 31\}$
- GA approach:
 - Representation: binary code, e.g., 01101 \leftrightarrow 13
 - Population size: 4
 - 1-point x-over, bitwise mutation
 - Roulette wheel selection
 - Random initialisation
- We show one generational cycle done by hand

X² example: Selection

String	Initial	x Value	Fitness	$Prob_i$	Expected	Actual
no.	population		$f(x) = x^2$		count	count
1	$0\ 1\ 1\ 0\ 1$	13	169	0.14	0.58	1
2	$1\ 1\ 0\ 0\ 0$	24	576	0.49	1.97	2
3	$0\ 1\ 0\ 0\ 0$	8	64	0.06	0.22	0
4	$1 \ 0 \ 0 \ 1 \ 1$	19	361	0.31	1.23	1
Sum			1170	1.00	4.00	4
Average			293	0.25	1.00	1
Max			576	0.49	1.97	2

X² example: Crossover

String	Mating	Crossover	Offspring	x Value	Fitness
no.	pool	point	after xover		$f(x) = x^2$
1	$0\ 1\ 1\ 0\ \ 1$	4	$0\ 1\ 1\ 0\ 0$	12	144
2	$1\ 1\ 0\ 0 \mid 0$	4	$1\ 1\ 0\ 0\ 1$	25	625
2	$1\ 1\ \ 0\ 0\ 0$	2	$1\ 1\ 0\ 1\ 1$	27	729
4	$1 \ 0 \ \ 0 \ 1 \ 1$	2	$1 \ 0 \ 0 \ 0 \ 0$	16	256
Sum					1754
Average					439
Max					729

X² example: Mutation

String	Offspring	Offspring	x Value	Fitness
no.	after xover	after mutation		$f(x) = x^2$
1	$0\ 1\ 1\ 0\ 0$	1 1 1 0 0	26	676
2	$1\ 1\ 0\ 0\ 1$	$1\ 1\ 0\ 0\ 1$	25	625
2	$1\ 1\ 0\ 1\ 1$	1 1 0 1 1	27	729
4	$1 \ 0 \ 0 \ 0 \ 0$	$1 \ 0 \ 1 \ 0 \ 0$	18	324
Sum				2354
Average				588.5
Max				729

Genetic Algorithms: The simple GA

- Has been subject of many (early) studies
 still often used as benchmark for novel GAs
- Shows many shortcomings, e.g.,
 - Representation is too restrictive
 - Mutation & crossover operators only applicable for bit-string & integer representations
 - Selection mechanism sensitive for converging populations with close fitness values
 - Generational population model can be improved with explicit survivor selection

Genetic Algorithms: Simple GA (SGA) summary

Representation	Bit-strings
Recombination	1-Point crossover
Mutation	Bit flip
Parent selection	Fitness proportional – implemented by Roulette Wheel
Survivor selection	Generational

Evolution Strategies: Quick overview

- Developed: Germany in the 1960's by Rechenberg and Schwefel
- Typically applied to numerical optimisation
- Attributed features:
 - fast
 - good optimizer for real-valued optimisation
 - relatively much theory
- Special:
 - self-adaptation of (mutation) parameters standard

Evolution Strategies: Example (1+1) ES

- Task: minimise $f : \mathbb{R}^n \to \mathbb{R}$
- Algorithm: "two-membered ES" using
 - Vectors from Rⁿ directly as chromosomes
 - Population size 1
 - Only mutation creating one child
 - Greedy selection

Evolution Strategies: Representation

- Chromosomes consist of two parts:
 - Object variables: x_1, \dots, x_n
 - Strategy parameters (mutation rate, etc):
 p₁,...,p_m

• Full size: $\langle x_1, \dots, x_n, p_1, \dots, p_n \rangle$

Evolution Strategies: Adaptive Mutation

- z values drawn from normal distribution N(ξ,σ)
 - mean ξ is set to 0
 - variation σ is called
 mutation step size
- σ is varied on the fly by the "1/5 success rule"

The "1/5 success rule"

- Goal: Balance exploration and exploitation
- Resets σ after every k iterations by
 - $-\sigma = \sigma / c$ if $p_s > 1/5$

$$-\sigma = \sigma \cdot c$$
 if $p_s < 1/5$

- $-\sigma = \sigma$ if $p_s = 1/5$
- where p_s is the % of successful mutations, 0.8 ≤ c ≤ 1

Evolution Strategies: Self-adaptation illustrated (1/2)

- Given a dynamically changing fitness landscape (optimum location shifted every 200 generations)
- Self-adaptive ES is able to
 - follow the optimum and
 - adjust the mutation step size after every shift !

Evolution Strategies: Self-adaptation illustrated cont'd (2/2)

Changes in the fitness values (left) and the mutation step sizes (right)

Evolution Strategies: Parent selection

- Parents are selected by uniform random distribution whenever an operator needs one/some
- Thus: ES parent selection is unbiased every individual has the same probability to be selected

Evolution Strategies: Recombination

- Two parents create one child
- Acts per variable / position by either
 - Averaging parental values, or
 - Selecting one of the parental values
- From two or more parents by either:
 - Local recombination: Two parents make a child
 - Global recombination: Selecting two parents randomly for each gene

Evolution Strategies: Names of recombinations

	Two fixed parents	Two parents selected for each i	
$z_i = (x_i + y_i)/2$	Local intermediary	Global intermediary	
z _i is x _i or y _i chosen randomly	Local discrete	Global discrete	

Evolution Strategies: ES summary

Representation	Real-valued vectors
Recombination	Discrete or intermediary
Mutation	Gaussian perturbation
Parent selection	Uniform random
Survivor selection	(μ,λ) or (μ+λ)

Evolutionary Programming: Quick overview

- Developed: USA in the 1960's by Fogel et al.
- Typically applied to:
 - traditional EP: prediction by finite state machines
 - contemporary EP: (numerical) optimization
- Attributed features:
 - very open framework: any representation and mutation op's OK
 - Contemporary EP has almost merged with ES
- Special:
 - no recombination
 - self-adaptation of parameters standard (contemporary) EP) 56

Evolutionary Programming: Representation

- For continuous parameter optimisation
- Chromosomes consist of two parts:
 - Object variables: x_1, \ldots, x_n
 - Mutation step sizes: $\sigma_1, \ldots, \sigma_n$
- Full size: $\langle x_1, \dots, x_n, \sigma_1, \dots, \sigma_n \rangle$

Evolutionary Programming: Recombination

- None
- Rationale: one point in the search space stands for a species, not for an individual and there can be no crossover between species

Evolutionary Programming: Selection

- Each individual creates one child by mutation
 - Deterministic
 - Not biased by fitness
- Parents and offspring compete for survival in round-robin tournaments.

Evolutionary Programming: Evolving checkers player (Fogel'02) (1/2)

Hidden

Output

Input

- Neural nets for evaluating future values of moves are evolved
- NNs have fixed structure with 5046 weights, these are evolved
- Representation:
 - vector of 5046 real numbers for NN weights
- Population size 15

Evolutionary Programming: Evolving checkers player (Fogel'02) (2/2)

- Tournament size q = 5
- Programs (with NN inside) play against other programs, no human trainer
- After 840 generation (6 months!) best strategy was tested against humans
- Program earned "expert class" ranking outperforming 99.61% of all rated players

Evolutionary Programming: Summary

Representation	Real-valued vectors
Recombination	None
Mutation	Gaussian perturbation
Parent selection	Deterministic (each parent one offspring)
Survivor selection	Probabilistic (μ + λ)

Genetic Programming: Quick overview

- Developed: USA in the 1990's by Koza
- Typically applied to:
 - machine learning tasks (prediction, classification...)
- Attributed features:
 - "automatic evolution of computer programs"
 - needs huge populations (thousands)
 - slow
- Special:
 - non-linear chromosomes: trees
 - mutation possible but not necessary

Genetic Programming: Initialisation

- Maximum initial depth of trees D_{max} is set
- Full method (each branch has depth = D_{max}):
 - nodes at depth d < D_{max} randomly chosen from function set F (IF, AND, =, >, *, etc.)
 - nodes at depth d = D_{max} randomly chosen from terminal set T (x,y,5000,NOC, etc.)
- Grow method (each branch has depth $\leq D_{max}$):
 - nodes at depth d < D_{max} randomly chosen from F \cup T
 - nodes at depth d = D_{max} randomly chosen from T
- Common GP initialisation: ramped half-and-half, where grow & full method each deliver half of initial population

Genetic Programming: Full Initialisation to depth 2

Genetic Programming: Grow Initialisation to depth 2

66

UiO Department of Informatics

University of Oslo

Genetic Programming: Variation Operators

Genetic Programming: Mutation

• Most common mutation: replace randomly chosen subtree by randomly generated tree

Genetic Programming: Recombination

Genetic Programming: Bloat

- Average tree sizes in the population tend to increase over time
- Countermeasures:
 - Maximum tree size
 - Parsimony
 pressure: penalty
 for being oversized

Genetic Programming: Summary

Representation	Tree structures
Recombination	Exchange of subtrees
Mutation	Random change in trees
Parent selection	Fitness proportional
Survivor selection	Generational replacement

Summary: The standard EA variants

Name	Representation	Crossover	Mutation	Parent selection	Survivor selection	Specialty
Genetic Algorithm	Usually fixed-length vector	Any or none	Any	Any	Any	None
Evolution Strategies	Real-valued vector	Discrete or intermediate recombination	Gaussian	Random draw	Best N	Strategy parameters
Evolutionary Programming	Real-valued vector	None	Gaussian	One child each	Tournament	Strategy parameters
Genetic Programming	Tree	Swap sub-tree	Replace sub-tree	Usually fitness proportional	Generational replacement	None
UiO **Department of Informatics** University of Oslo

Particle Swarm Optimisation: Quick overview

- Developed: in 1995 by Kennedy and Eberhart
- Inspired by social behavior of bird flocking/fish schooling

UiO **Content of Informatics** University of Oslo

Particle Swarm Optimisation: Representation (1/2)

• Every population member can be considered as a pair $\langle \bar{x}, \bar{p} \rangle$

where the first vector is candidate solution and the second one a perturbation vector in IRⁿ

• The perturbation vector determines how the solution vector is changed to produce a new one: $\overline{x}' = \overline{x} + \overline{p}'$

, where \overline{p} ' is calculated from \overline{p} and some additional information

UiO **Content of Informatics** University of Oslo

Particle Swarm Optimisation: Representation (2/2)

- A member is a point in space with a position and a velocity
- The perturbation is defined as the weighted sum of three components:
 - Current perturbation vector
 - Vector difference current position to best position of member so far
 - Vector difference from current position to best position of population so far

UiO **Department of Informatics** University of Oslo

A Reminder about Search Landscapes

PSO: Velocity and Position Update

UiO **Department of Informatics** University of Oslo

Particle Swarm Optimisation: Example moving target

- Optimum moves randomly
- Particles do not know position of optimum but do know which particle is closest and are attracted to that one

Particle Swarm Optimisation: Summary

Representation	Real-valued vectors
Recombination	None
Mutation	Adding velocity vector
Parent selection	Deterministic (each parent creates one offspring via mutation)
Survivor selection	Generational (offspring replaces parents)