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Chapter 5:

Fitness, Selection and Population Management

« Selection is second
fundamental force for
evolutionary systems

» Components exist of:

- Population

management models
- Selection operators
- Preserving diversity

Variation

UL
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Population Management Models:
Introduction

+ Two different population management models
exist:
— Generational model
 each individual survives for exactly one generation
« the entire set of parents is replaced by the offspring
— Steady-state model
« one offspring is generated per generation
» one member of population replaced
» Generation Gap
— The proportion of the population replaced
— Parameter = 1.0 for G-GA, = 1/pop_size for SS-GA

UiO 2 Deppartinit of Informatica
Onbwewsty of Onlo

Population Management Models:
Fitness based competition

 Selection can occur in two places:
— Parent selection (selects mating pairs)
— Survivor selection (replaces population)
 Selection works on the population
-> selection operators are representation-
independent !
» Selection pressure: As selection pressure
increases, fitter solutions are more likely to
survive, or be chosen as parents
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Effect of Selection Pressure

* High Pressure

* Low Pressure
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Why Not Always High Selection Scheme of an EA:
General scheme of EAs

Pressure?
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Population
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v
Termination .
Offspring
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Parent Selection: . . .
. . . Stochastic Universal Sampling
Fitness-Proportionate Selection
Example: roulette wheel selection
16 =17% 0 Total fitness = I F
fitness(A) =3
| A c L~ [ & [ [ofe]rfe
fitness(B) = 1 — R .
fltneSS(C) = 2 3/6 = 50% 2/6 = 33% [|\ E FJ,-"_.’\" E
re (0, FiN) 1
Stochastic universal sampling (SUS)
Select multiple individuals by making one spin of
the wheel with a number of equally spaced arms
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Parent Selection: Parent Selection:

Fitness-Proportionate Selection (FPS) Rank-based Selection
* Probability for individual / to be selected for mating in a + Attempt to remove problems

population size y with FPS is of FPS by basing selection
Poc(iy=1/3t probabilities on relative
FPS = i
j=t1

rather than absolute fitness

* Rank population according to
fitness and then base
selection probabilities on rank
(fittest has rank -1 and worst
rank 0)

» This imposes a sorting
overhead on the algorithm

* Problems include

— One highly fit member can rapidly take over if rest of population is
much less fit: Premature Convergence

— At end of runs when finesses are similar, loss of selection pressure
» Scaling can fix the last problem by:
- Windowing: f '(I) — f(l)_ﬂt

where gis worst fitness in this (last n) generations
— Sigma Scaling: § '(i) = max(f (i)— (f_ Ceo,),0)
where c is a constant, usually 2.0
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Rank-based selection:
Exponential Ranking

Rank-based Selection:
Linear Ranking

(2-s) 2i(s—1) l—e PP
PRI Posp-ranc (1) = o /

Plin—rank(i) =

» Parameterised by factor s: 1 <s<2
— Tunes selection pressure

» Simple 3 member example

* Linear Ranking is limited in selection
pressure

» Exponential Ranking can allocate more

Individual |{Fitness|Rank| Pecipp| Pecl L (s = 2} PeeiLR (s = 1.5} . \ . ..
A 1 0T 03 0 Tic than 2 c-:oples to fittest individual .
B 1 1| 04 0.33 0.33 * Normalise constant factor ¢ according to
c 5 2 | 05 0.67 0.5 population size
Sum 10 1.0 1.0 1.0 w
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Parent Selection:
Tournament Selection (1/3)

» All methods above rely on global
population statistics
— Could be a bottleneck esp. on parallel
machines, very large population

— Relies on presence of external fitness function
which might not exist: e.g. evolving game
players
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Parent Selection:
Tournament Selection (2/3)

Idea for a procedure using only local fithess
information:
» Pick k members at random then select the best of
these
* Repeat to select more individuals
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Parent Selection:
Tournament Selection (3/3)

 Probability of selecting i/ will depend on:

— Rank of i
— Size of sample k
» higher k increases selection pressure
— Whether contestants are picked with
replacement
 Picking without replacement increases selection pressure
— Whether fittest contestant always wins
(deterministic) or this happens with probability p

19
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Parent Selection:
Uniform

i 1
I:)uniform (I) =
y2/

» Parents are selected by uniform random
distribution whenever an operator needs
one/some

» Uniform parent selection is unbiased - every
individual has the same probability to be
selected

20
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Scheme of an EA:
General scheme of EAs

Parent selection

> Parents
Intialization
Recombination
(crossover)
Population
Mutation
Termination I .
Offspring

Survivor selectio 2t
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Survivor Selection (Replacement)

* From a set of y parents and A offspring:
Select a set of y individuals forming the
next generation

» Survivor selection can be divided into two
approaches:

— Age-Based Replacement
* Fitness is not taken into account

* In SS-GA can implement as “delete-
random” (not recommended) or as first-
in-first-out (a.k.a. delete-oldest)

— Fitness-Based Replacement N
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Fitness-based replacement (1/2)
 Elitism
- Alvx]iays keep at least one copy of the fittest solution
so far
— Widely used in both population models (GGA, SSGA)
* Delete Worst
— The worst X\ individuals are replaced

* Round-robin tournament (from EP)

— Pairwise competitions in round-robin format:

» Each individual x is evaluated against q other randomly
chosen individuals in 1-on-1 tournaments

» For each comparison, a "win" is assigned if x is better than
its opponent

» The p solutions with the greatest number of wins are the
winners of the tournament

— Parameter g allows tuning selection pressure
— Typically g =10 »
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Fitness-based replacement (2/2)
(from ES)

* (u,A)-selection (best candidates can be lost)
- based on the set of children only (A > )

- choose the best p offspring for next
generation

* (utA)-selection (elitist strategy)
- based on the set of parents and children

- choose the best p offspring for next
generation

+ Often (u,A)-selection is preferred because it is
better in leaving local optima

24
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Multimodality

Most interesting problems have more than one
locally optimal solution.

h

fitness

25
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Multimodality

« Often might want to identify several possible
peaks

« Different peaks may be different good ways
to solve the problem.

* We therefore need methods to preserve
diversity (instead of converging to one peak)

VA

26
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Approaches for Preserving Diversity:
Introduction
 Explicit vs implicit
* Implicit approaches:
— Impose an equivalent of geographical separation
— Impose an equivalent of speciation

» Explicit approaches
— Make similar individuals compete for resources
(fitness)
— Make similar individuals compete with each other
for survival
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Explicit Approaches for Preserving
Diversity: Fitness Sharing (1/2)
+ Restricts the number of individuals within a
given niche by “sharing” their fitness
* Need to set the size of the niche o4, in
either genotype or phenotype space
* run EA as normal but after each generation
set

fv(i): f(l) l—d/O' dSG
Z . sh(d)=
> sh(d(i. )
j=1

0 otherwjse




06.09.2016

U0 % Deperimant of Informatics
Cxbrexdey uf Oulo

Explicit Approaches for Preserving
Diversity: Fitness Sharing (2/2)

. sh(d)=
;Sh(d(" 1) 0 otherwjse
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Explicit Approaches for Preserving
Diversity: Crowding

 |ldea: New individuals replace similar
individuals

+ Randomly shuffle and pair parents, produce 2
offspring

» Each offspring competes with their nearest
parent for survival (using a distance measure)

» Result: Even distribution among niches.
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Explicit Approaches for Preserving
Diversity: Crowding vs Fithess sharing

T T T T T T T T

T f.‘\ 1 Fitness
! [\ | sharing
[ \ ]
1= e~ \ / \ -
‘. . \ PR T
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Observe the number of individuals per niche a1

UiO £ Department of Informatica
Werhrrrnly o (sl

Implicit Approaches for Preserving
Diversity: Automatic Speciation

 Either only mate with |
genotypically /
phenotypically similar

members or ”
+ Add species-tags to a ‘.

genotype

— initially randomly set

— when selecting partner
for recombination, only
pick members with a
good match

o
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Implicit Approaches for Preserving
Diversity: “Island” Model Parallel EAs

—

Periodic migration of individual solutions between populations

06.09.2016
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Implicit Approaches for Preserving
Diversity: “Island” Model Parallel EAs

* Run multiple populations in parallel

 After a (usually fixed) number of generations
(an Epoch), exchange individuals with
neighbours

* Repeat until ending criteria met

* Partially inspired by parallel/clustered
systems
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Chapter 6:
Popular Evolutionary Algorithm Variants

Historical EA variants:

* Genetic Algorithms

» Evolution Strategies

+ Evolutionary Programming
» Genetic Programming

Algorithm Chromosome |Crossover Mutation
Representation

Genetic Algorithm (GA) Array X X

Genetic Programming (GP) Tree X X

Evolution Strategies (ES) Array (X) X

Evolutionary Programming (EP) | No constraints - X

35
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Genetic Algorithms:
Overview Simple GA

+ Developed: USA in the 1960’s
+ Early names: Holland, DeJong, Goldberg
» Typically applied to:
— discrete function optimization
— benchmark for comparison with other algorithms
— straightforward problems with binary representation
» Features:
— not too fast
— missing new variants (elitism, sus)
— often modelled by theorists

36
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Genetic Algorithms:
Overview Simple GA (2/2)

* Holland’s original GA is now known as the
simple genetic algorithm (SGA)
» Other GAs use different:
— Representations
— Mutations
— Crossovers
— Selection mechanisms
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Genetic Algorithms:
SGA reproduction cycle

» Select parents for the mating pool
(size of mating pool = population size)
+ Shuffle the mating pool

» Apply crossover for each consecutive pair
with probability p., otherwise copy parents

» Apply mutation for each offspring (bit-flip
with probability p,, independently for each bit)

* Replace the whole population with the
resulting offspring

38
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Genetic Algorithms:
An example after Goldberg ’89
« Simple problem: max x2 over {0,1,...,31}
* GA approach:
— Representation: binary code, e.g., 01101 <> 13
— Population size: 4
— 1-point x-over, bitwise mutation
— Roulette wheel selection
— Random initialisation

* We show one generational cycle done by
hand
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X2 example: Selection

String Initial |x Value| Fitness |Prob;|Expected|Actual
no. population f(z) =2 count | count
1 01104 13 169 0.14 0.58 1
2 11000 24 576 0.49 1.97 2
3 01000 8 64 0.06 0.22 0
4 10011 19 361 0.31 1.23 1
Sum 1170 1.00 4.00 4
Average 293 0.25 1.00 1
Max 576 0.49 1.97 2

40
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X2 example: Crossover
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X2 example: Mutation

String Mating |Crossover| Offspring |x Value| Fitness
no. pool point |after xover f(x) = x?
1 oLr1o0/1 4 01100 12 144
2 1100/0 4 11001 25 625
2 11000 2 11011 27 729
4 10|/011 2 10000 16 256
Sum 1754
Average 439
Max 729
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Genetic Algorithms:
The simple GA

* Has been subject of many (early) studies
— still often used as benchmark for novel GAs
» Shows many shortcomings, e.g.,
— Representation is too restrictive

— Mutation & crossover operators only applicable
for bit-string & integer representations

— Selection mechanism sensitive for converging
populations with close fithess values

— Generational population model can be improved
with explicit survivor selection

43

String | Offspring Offspring |z Value| Fitness
no. after xover|after mutation fz) = z2
1 01100 11100 26 676
2 11001 11001 25 625
2 1 1:0:1°1 11601 1 27 729
4 10000 10/]100 13 324
Sum 2354
Average 588.5
Max 729
Ui0 £ Depariment of Informatics
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Genetic Algorithms:
Simple GA (SGA) summary

Representation Bit-strings

Recombination 1-Point crossover

Mutation Bit flip

Parent selection Fitness proportional — implemented

by Roulette Wheel
Survivor selection Generational

44
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Evolution Strategies:
Quick overview

+ Developed: Germany in the 1960’s by Rechenberg
and Schwefel
» Typically applied to numerical optimisation
« Attributed features:
— fast
— good optimizer for real-valued optimisation
— relatively much theory
* Special:
— self-adaptation of (mutation) parameters standard

45
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Evolution Strategies:
Example (1+1) ES

+ Task: minimise f: R" > R
 Algorithm: “two-membered ES” using
— Vectors from R" directly as chromosomes
— Population size 1
— Only mutation creating one child
— Greedy selection

46
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Evolution Strategies:
Representation
« Chromosomes consist of two parts:
— Object variables: xq,...,X,
— Strategy parameters (mutation rate, etc):
p1’---,pm

* Full size: ( Xq,...,Xn, P1y--sPn )

47
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Evolution Strategies: Adaptive
Mutation

0.50 ' :
+ zvalues drawn from o - 10
normal distribution /N

N(z.0) _ 1\

— meanissetto 0 \

_
— variation c is called AP § / \
- X

mutation step size 0-2¢ _ = 1.5
* o is varied on the fly by o.10k f\f’ 3.0
the “1/5 success rule” _/ \_
0.00 i t? i e
—4 -2 Q 2

48
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The “1/5 success rule”

0.50 T

Goal: Balance exploration
and exploitation 0.40
Resets o after every k

iterations by 050

- c=clc ifp,>1/5 L
—o=c-c ifps<1/5

- o0=0 if pg = 1/5 0.10
where p;is the % of )
successful mutations, 0.8 0.00 £

<c<1 ‘ ;

49
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Evolution Strategies:
Self-adaptation illustrated (1/2)

» Given a dynamically changing fitness
landscape (optimum location shifted every
200 generations)

» Self-adaptive ES is able to

— follow the optimum and
— adjust the mutation step size after every shift !

50
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Evolution Strategies:
Self-adaptation illustrated cont’d (2/2)

10 T T T T 102 .
® - A f A &
3 wf i K 1 it 1 }: \ ’\ I] 3
5 ; 5 1{ R [ P
£ = Y \ L T
€ = 1 1 \ H Y [
2 ' z 1 YRR IR
=1 kY 1 3 1 | \ |
£ = 3 Yol | i
B2 !} F g3 Vo {} vl ‘R 3
3 102} 4 10 ‘, rr y \j “I it
: | Y [
E—l | } 10—tL 4
e ER y

3
1w 8 | L L L 10 L
o 200 400 eo0  Aba 1060 o o2 “'32’ o 8

Generatian

Changes In the fiiness values (left) and the mutation step slzes (right)
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Evolution Strategies:
Parent selection

» Parents are selected by uniform random
distribution whenever an operator needs
one/some

« Thus: ES parent selection is unbiased - every
individual has the same probability to be
selected

52
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Evolution Strategies:
Recombination

+ Two parents create one child
 Acts per variable / position by either
— Averaging parental values, or
— Selecting one of the parental values
* From two or more parents by either:
— Local recombination: Two parents make a child

— Global recombination: Selecting two parents
randomly for each gene

06.09.2016
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Evolution Strategies:
Names of recombinations

Two parents

Two fixed selected for
parents each i
Local Global
.= (X F Y.
z; = (x; +y)/2 intermediary intermediary
z;is x;ory;
chosen Local discrete  Global discrete
randomly
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Evolution Strategies:
ES summary

Representation Real-valued vectors

Recombination Discrete or intermediary

Mutation Gaussian perturbation

Uniform random
(w2) or (uta)

Parent selection

Survivor selection
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Evolutionary Programming:
Quick overview

+ Developed: USA in the 1960’s by Fogel et al.
» Typically applied to:
— traditional EP: prediction by finite state machines
— contemporary EP: (numerical) optimization
* Attributed features:

— very open framework: any representation and
mutation op’s OK

— Contemporary EP has almost merged with ES
» Special:
— no recombination

— self-adaptation of parameters standard (contemporary
EP) 5

11
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Evolutionary Programming:
Representation

» For continuous parameter optimisation

» Chromosomes consist of two parts:
— Object variables: x;,...,X,
— Mutation step sizes: o4,...,0,

* Full size: ( x4,...,X,, O4,...,0p)

57
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Evolutionary Programming:
Recombination

* None

+ Rationale: one

point in the search
space stands for a
species, not for an L

individual and

there can be no
crossover between
species
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Evolutionary Programming:
Selection

» Each individual creates one child by mutation
— Deterministic
— Not biased by fitness

» Parents and offspring compete for survival in
round-robin tournaments.
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Evolutionary Programming:
Evolving checkers player (Fogel’02) (1/2)
* Neural nets for evaluating

future values of moves are
evolved

5046 weights, these are
evolved

* Representation:

— vector of 5046 real numbers for
NN weights

» Population size 15

1R
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Evolutionary Programming:

Evolving checkers player (Fogel’02) (2/2)

* Tournament size q=5

» Programs (with NN inside) play against other
programs, no human trainer

+ After 840 generation (6 months!) best
strategy was tested against humans

» Program earned “expert class” ranking
outperforming 99.61% of all rated players

06.09.2016
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Evolutionary Programming:

Summary
Representation Real-valued vectors
Recombination None
Mutation Gaussian perturbation

Parent selection Deterministic (each parent one
offspring)

Probabilistic (u+1)

Survivor selection
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Genetic Programming:
Quick overview

» Developed: USA in the 1990’s by Koza
» Typically applied to:
— machine learning tasks (prediction, classification...)
 Attributed features:
— “automatic evolution of computer programs”
— needs huge populations (thousands)
— slow
» Special:
— non-linear chromosomes: trees
— mutation possible but not necessary
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Genetic Programming:
Initialisation

» Maximum initial depth of trees D, is set

* Full method (each branch has depth = D, ,,):

— nodes at depth d < D, randomly chosen from
function set F (IF, A?\]laﬁ, =, >, * etc.)

— nodes at depth d = D, ., randomly chosen from
terminal set T (x,y,SB?fO,NOC, etc.)

* Grow method (each branch has depth <D,,,):
— nodes at depth d < D,,,, randomly chosen fromF U T
— nodes at depth d = D,,,,, randomly chosen from T

« Common GP initialisation: ramped half-and-half,
where grow & full method each deliver half of
initial population

64

1R



06.09.2016

U0 % Deperimant of Informatics
Cxbrexdey uf Oulo

Genetic Programming:
Full Initialisation to depth 2

t=1 t=2 t=3 t=4
f&-\ (D o (D
(i) () (i)

X X ¥

t=6 t=6 t=7

(3 (D ()

(%) (D (%) 0 (+) (D
X y X y 1 X ¥ 0

65

Source: www.gp-field-guide.org.uk
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Genetic Programming:
Grow Initialisation to depth 2

/@\A/@%
Ao Pu

66

Source: www.gp-field-guide.org.uk
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Genetic Programming: Variation
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next «—— | population size 7 ef—
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select wo probablisicoly
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Genetic Programming: Mutation

+ Most common mutation: replace randomly
chosen subtree by randomly generated tree

w
=

68
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Genetic Programming: Recombination Genetic Programming:
. Bloat
- * Average tree sizes
> 4 " < ; in the population
tend to increase
12 over time
: t + Countermeasures:
Parent 1 Parent 2 . ]
— Maximum tree size
— Parsimony
- * pressure: penalty
. for being oversized
-
Child 1 Child 2 ’ "
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Genetic Programming: Summary: The standard EA variants
Summary
. Representation Crossover Mutation Parent Survivor Specialty
Representation Tree structures selection  selection
Recombination Exchange of subtrees i Usaly edong o vone any Any Ay None
Mutation Random change in trees :
- - - Evoluthn .Discrete'or _ Strategy
Parent Selectlon Fltness propor-tlonal Strategies Real-valued vector r;n(:z:]r;;‘e:::‘toen Gaussian ~ Random draw BestN parameters
Survivor selection | Generational replacement Evolutionary N
Programming  Real-valued vector None Gaussian ~ One child each ~ Tournament pararz:?eyrs
Genetic § X
Programming Tree Swap sub-tree SR:tf_l tar gz U;.:)aplloynfilér:]zsls ii’;:é::)::‘l None
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Particle Swarm Optimisation:
Quick overview

+ Developed: in 1995 by
Kennedy and Eberhart

* Inspired by social
behavior of bird
flocking/fish schooling
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Particle Swarm Optimisation:
Representation (1/2)

» Every population member can be considered
as a pair (x,p)
where the first vector is candidate
solution and the second one a perturbation
vector in IR"

* The perturbation vector determines how the
solution vector is changed to produce a new
one: x'=x+p'

, Where p'is calculated from Pand
some additional information

74
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Particle Swarm Optimisation:

Representation (2/2)

* A member is a point in space with a position and
a velocity

* The perturbation is defined as the weighted sum
of three components:

— Current perturbation vector

— Vector difference current position to best
position of member so far

— Vector difference from current position to best
position of population so far

|Image source: httE://wirelesstechthoughts.b\ogspot.no/
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A Reminder about Search Landscapes
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PSO: Velocity and Position Update
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Image source: Hassan et al. 2004: A COPMARISON OF PARTICLE SWARM OPTIMIZATION AND THE GENETIC ALGORITHM
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Particle Swarm Optimisation:
Example moving target

* Optimum moves randomly

+ Particles do not know position of optimum but do know
which particle is closest and are attracted to that one
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Particle Swarm Optimisation:

Summary

Representation Real-valued vectors

Recombination None

Mutation Adding velocity vector

Parent selection Deterministic (each parent
creates one offspring via
mutation)

Survivor selection Generational (offspring replaces
parents)
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