

UIO S Department of Informatics Outrosity of Onio

Parent Selection: Tournament Selection (1/3)

- All methods above rely on global population statistics
 - Could be a bottleneck esp. on parallel machines, very large population
 - Relies on presence of external fitness function which might not exist: e.g. evolving game players

17

UiO[®] Department of Informatica Calvesty of Onio

Parent Selection: Tournament Selection (3/3)

- Probability of selecting *i* will depend on:
 - Rank of i
 - Size of sample k
 - higher k increases selection pressure
 - Whether contestants are picked with replacement
 - · Picking without replacement increases selection pressure
 - Whether fittest contestant always wins (deterministic) or this happens with probability p

UiO Cooperiment of Informatica

UIO Bepartment of Informatica Violentity of Onio

information:

these

Parent Selection:

Tournament Selection (2/3)

Idea for a procedure using only local fitness

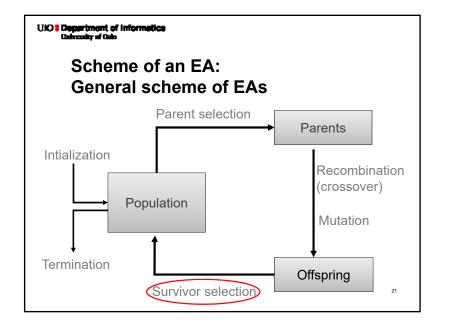
· Repeat to select more individuals

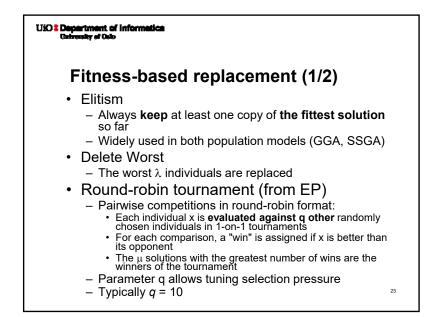
• Pick *k* members at random then select the best of

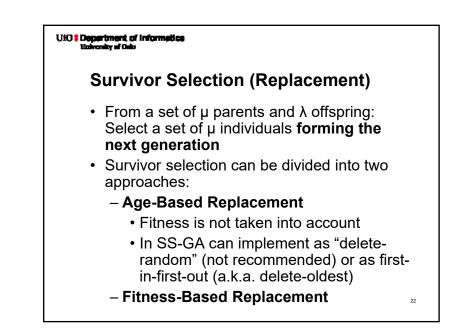
Parent Selection: Uniform

$$P_{uniform}(i) = \frac{1}{\mu}$$

- Parents are selected by uniform random distribution whenever an operator needs one/some
- Uniform parent selection is unbiased every individual has the same probability to be selected







USC & Department of Informatica University of Oslo		
Fitness-based	replacement	(2/2)

-- -

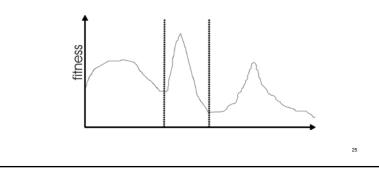
(from ES)

- (μ,λ)-selection (best candidates can be lost)
 - based on the set of **children only** ($\lambda \ge \mu$)
 - choose the $\textit{best}\; \mu$ offspring for next generation
- (μ+λ)-selection (elitist strategy)
 - based on the set of parents and children
 - choose the $\textit{best}\; \mu$ offspring for next generation
- Often (μ, λ) -selection is preferred because it is better in leaving local optima

UIO S Department of Informatica University of Onio

Multimodality

Most interesting problems have more than one locally optimal solution.



WD: Department of Information MultimodalityOften might want to identify several possible peaks Different peaks may be different good ways to solve the problem. We therefore need methods to preserve diversity (instead of converging to one peak)

UiO 2 Department of Informatica Colorado

Approaches for Preserving Diversity: Introduction

- Explicit vs implicit
- Implicit approaches:
 - Impose an equivalent of geographical separation
 - Impose an equivalent of speciation
- · Explicit approaches
 - Make similar individuals compete for resources (fitness)
 - Make similar individuals compete with each other for survival

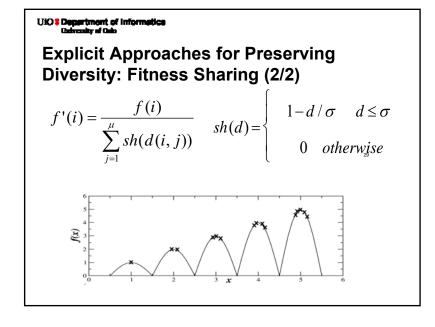
27

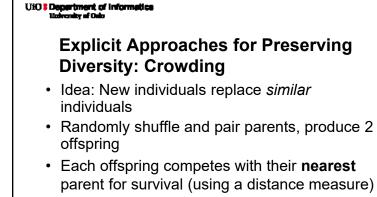
UiO Cooperiment of Informatica

Explicit Approaches for Preserving Diversity: Fitness Sharing (1/2)

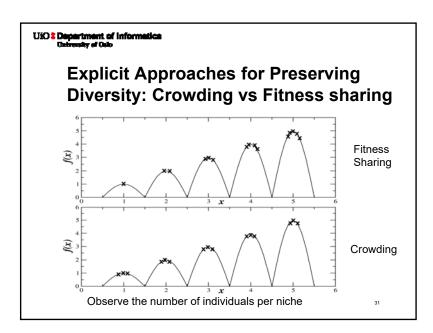
- Restricts the number of individuals within a given niche by "sharing" their fitness
- Need to set the size of the niche σ_{share} in either genotype or phenotype space
- run EA as normal but after each generation set

$$f'(i) = \frac{f(i)}{\sum_{j=1}^{\mu} sh(d(i,j))} \quad sh(d) = \begin{cases} 1 - d/\sigma & d \le \sigma \\ 0 & otherwise \end{cases}$$

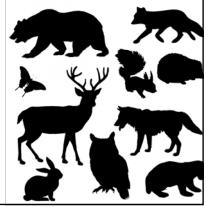




• Result: Even distribution among niches.



- Entrer only mate with genotypically / phenotypically similar members or
- Add species-tags to genotype
 - initially randomly set
 - when selecting partner for recombination, only pick members with a good match



34

36

<text><section-header><image><image>

Department of Information Implicit Approaches for Preserving Diversity: "Island" Model Parallel EAsRun multiple populations in parallel After a (usually fixed) number of generations (an *Epoch*), exchange individuals with neighbours Repeat until ending criteria met Partially inspired by parallel/clustered systems

UiO 2 Department of Informatica University of Onlo

Chapter 6: Popular Evolutionary Algorithm Variants

Historical EA variants:

- Genetic Algorithms
- Evolution Strategies
- Evolutionary Programming
- Genetic Programming

Algorithm	Chromosome Representation	Crossover	Mutation
Genetic Algorithm (GA)	Array	Х	Х
Genetic Programming (GP)	Tree	Х	Х
Evolution Strategies (ES)	Array	(X)	Х
Evolutionary Programming (EP)	No constraints	-	Х
			35

UKO : Department of Information Genetic Algorithms: Overview Simple GA • Developed: USA in the 1960's • Early names: Holland, DeJong, Goldberg • Typically applied to: - discrete function optimization - benchmark for comparison with other algorithms - straightforward problems with binary representation • Features: - not too fast - missing new variants (elitism, sus) - often modelled by theorists

UIO S Department of Informatics Coloradity of Calo

Genetic Algorithms: Overview Simple GA (2/2)

- · Holland's original GA is now known as the simple genetic algorithm (SGA)
- Other GAs use different:
 - Representations
 - Mutations
 - Crossovers
 - Selection mechanisms

UiO 2 Department of Informatica Colorado

Genetic Algorithms: An example after Goldberg '89

- Simple problem: max x² over {0,1,...,31}
- · GA approach:
 - Representation: binary code, e.g., $01101 \leftrightarrow 13$
 - Population size: 4
 - 1-point x-over, bitwise mutation
 - Roulette wheel selection
 - Random initialisation
- · We show one generational cycle done by hand

UiO **Copariment of Informatics**

UIO B Department of Informatica Violentity of Onio

Genetic Algorithms:

• Shuffle the mating pool

resulting offspring

SGA reproduction cycle

• Select parents for the mating pool

(size of mating pool = population size)

• Apply crossover for each consecutive pair

with probability p_c, otherwise copy parents

with probability p_m independently for each bit)

• Apply mutation for each offspring (bit-flip

· Replace the whole population with the

37

39

X² example: Selection

String	Initial	x Value	Fitness		Expected	Actual
no.	population		$f(x) = x^2$		count	count
1	01101	13	169	0.14	0.58	1
2	11000	24	576	0.49	1.97	2
3	01000	8	64	0.06	0.22	0
4	10011	19	361	0.31	1.23	1
Sum			1170	1.00	4.00	4
Average			293	0.25	1.00	1
Max	[576	0.49	1.97	2

40

UIO 8 Department of Informatics Outprovity of Onio

X² example: Crossover

String	Mating	Crossover	Offspring	x Value	Fitness
no.	pool	point	after xover		$f(x) = x^2$
1	0110 1	4	01100	12	144
2	$1\ 1\ 0\ 0 \mid 0$	4	$1\ 1\ 0\ 0\ 1$	25	625
2	$1\ 1\ \ 0\ 0\ 0$	2	11011	27	729
4	$1\ 0\ \ 0\ 1\ 1$	2	$1\ 0\ 0\ 0\ 0$	16	256
Sum					1754
Average					439
Max					729
				i	
					41

UIO B Department of Informatica Violentity of Onio

UiO **Constitution** University of Odia

Genetic Algorithms:

Simple GA (SGA) summary

X² example: Mutation

String	Offspring	Offspring	x Value	Fitness
no.	after xover	after mutation		$f(x) = x^2$
1	01100	11100	26	676
2	11001	11001	25	625
2	11011	11011	27	729
4	10000	10100	18	324
Sum				2354
Average				588.5
Max				729

UiO Coheriment of Informatica Coherenty of Onio **Genetic Algorithms:** The simple GA · Has been subject of many (early) studies - still often used as benchmark for novel GAs · Shows many shortcomings, e.g., - Representation is too restrictive - Mutation & crossover operators only applicable for bit-string & integer representations - Selection mechanism sensitive for converging populations with close fitness values - Generational population model can be improved with explicit survivor selection

Representation	Bit-strings
Recombination	1-Point crossover
Mutation	Bit flip
Parent selection	Fitness proportional – implemented by Roulette Wheel
Survivor selection	Generational

43

UIO S Department of Informatics Outrouty of Onlo

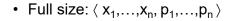
Evolution Strategies: Quick overview

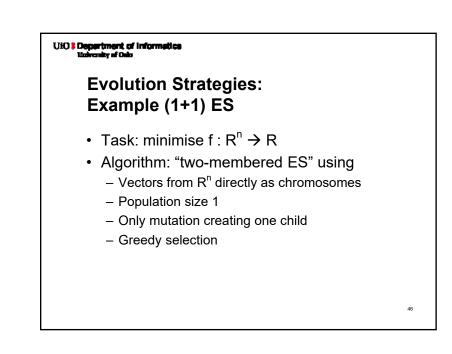
- Developed: Germany in the 1960's by Rechenberg and Schwefel
- Typically applied to numerical optimisation
- · Attributed features:
 - fast
 - good optimizer for real-valued optimisation
 - relatively much theory
- · Special:
 - self-adaptation of (mutation) parameters standard

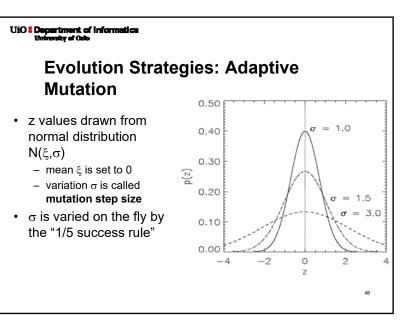
UiO **Constraints of Informatica** Contrastly of Onlo

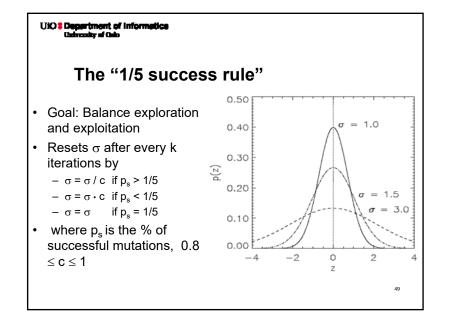
Evolution Strategies: Representation

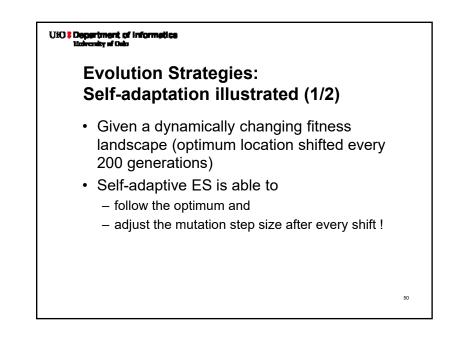
- · Chromosomes consist of two parts:
 - Object variables: x_1, \ldots, x_n
 - Strategy parameters (mutation rate, etc): p_1, \ldots, p_m

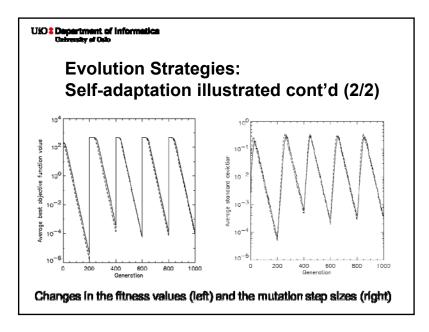


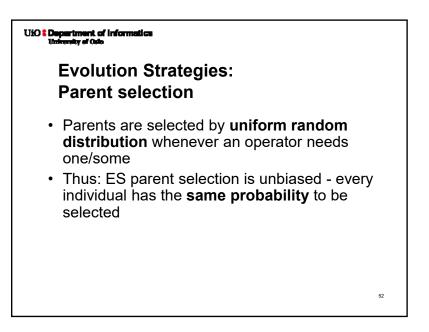












UIO S Department of Informatica Outworks of Onio

Evolution Strategies: Recombination

- · Two parents create one child
- Acts per variable / position by either
 - Averaging parental values, or
 - Selecting one of the parental values
- From two or more parents by either:
 - Local recombination: Two parents make a child

53

55

 Global recombination: Selecting two parents randomly for each gene

UiO **3 Department of Informatica** Videonity of Oxio

Evolution Strategies: Names of recombinations

$z_i = (x_i + y_i)/2$ Local Global intermediary intermediary z_i is x_i or y_i
chosen Local discrete Global discrete randomly

Evolution Strategies: ES summary Representation Recombination Discrete or intermediary Mutation Parent selection Uniform random

Survivor selection

 (μ,λ) or $(\mu+\lambda)$

UiO \$ Department of Informatica University of Odo
Evolutionary Programming: Quick overview
 Developed: USA in the 1960's by Fogel et al. Typically applied to: traditional EP: prediction by finite state machines contemporary EP: (numerical) optimization Attributed features: very open framework: any representation and mutation op's OK Contemporary EP has almost merged with ES
 Special: no recombination self-adaptation of parameters standard (contemporary EP) 56

UIO S Department of Informatica Outrouity of Onio

Evolutionary Programming: Representation

- For continuous parameter optimisation
- Chromosomes consist of two parts:
 - Object variables: x₁,...,x_n
 - Mutation step sizes: $\sigma_1, ..., \sigma_n$
- + Full size: $\langle \ x_1,...,x_n, \sigma_1,...,\sigma_n \rangle$

UiO[®] Department of Informatica Calvesty of Onio

Evolutionary Programming: Selection

· Each individual creates one child by mutation

57

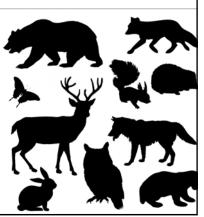
59

- Deterministic
- Not biased by fitness
- Parents and offspring compete for survival in round-robin tournaments.

UIO B Department of Informatica Matematy of Onio

Evolutionary Programming: Recombination

- None
- Rationale: one point in the search space stands for a species, not for an individual and there can be no crossover between species



Ont

UiO **Coperiment of Informatics**

Evolutionary Programming: Evolving checkers player (Fogel'02) (1/2)

- Neural nets for evaluating future values of moves are evolved
- NNs have fixed structure with 5046 weights, these are evolved
- Representation:
 - vector of 5046 real numbers for NN weights
- Population size 15

62

64

UIO S Department of Informatica Outrouity of Onio

Evolutionary Programming: Evolving checkers player (Fogel'02) (2/2)

- Tournament size q = 5
- Programs (with NN inside) play against other programs, no human trainer
- After 840 generation (6 months!) best strategy was tested against humans
- Program earned "expert class" ranking outperforming 99.61% of all rated players

Evolutionary Programming:

Summary

UIO
Department of Informatica Violentity of Onio

Representation	Real-valued vectors
Recombination	None
Mutation	Gaussian perturbation
Parent selection	Deterministic (each parent one offspring)
Survivor selection	Probabilistic (μ+λ)

UiO Coheriment of Informatica Coherenty of Oslo

Genetic Programming: Quick overview

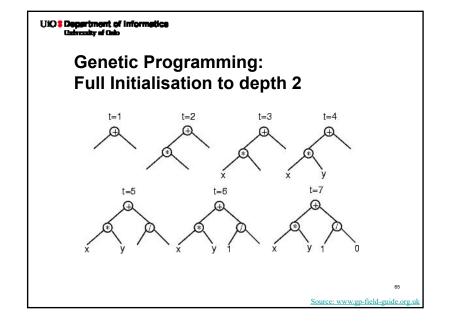
- · Developed: USA in the 1990's by Koza
- · Typically applied to:
 - machine learning tasks (prediction, classification...)
- Attributed features:
 - "automatic evolution of computer programs"
 - needs huge populations (thousands)
 - slow
- Special:
 - non-linear chromosomes: trees
 - mutation possible but not necessary

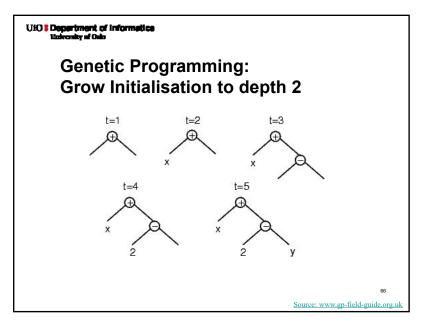
UiO **Copariment of Informatics**

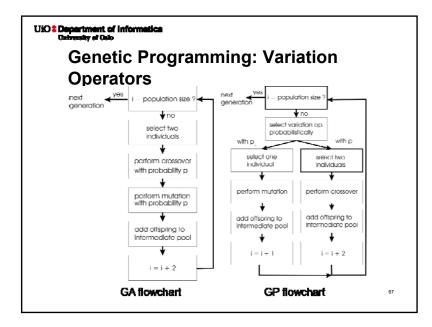
Genetic Programming: Initialisation

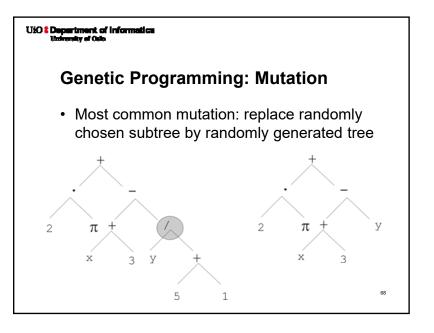
- Maximum initial depth of trees D_{max} is set
- Full method (each branch has depth = D_{max}):
 nodes at depth d < D_{max} randomly chosen from
 - function set F (IF, AND, =, >, *, etc.)
 - nodes at depth d = D_{max} randomly chosen from terminal set T (x,y,5000,NOC, etc.)
- Grow method (each branch has depth ≤ D_{max}):
 nodes at depth d < D_{max} randomly chosen from F ∪ T
 - nodes at depth d = D_{max} randomly chosen from T
- Common GP initialisation: ramped half-and-half, where grow & full method each deliver half of initial population

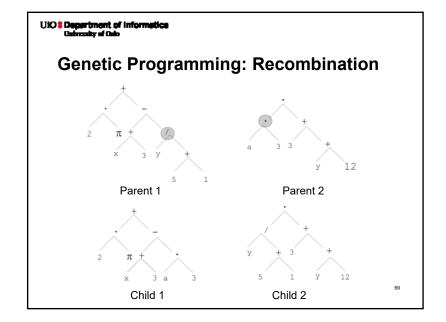
63

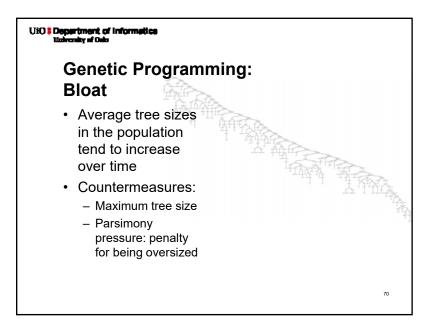












UIO 3 Department of Informatica Colorestly of Gelo				
Genetic Prograr Summary	nming:			
Representation	Tree structures			
Recombination	Exchange of subtrees			
Mutation	Random change in trees			
Parent selection	Fitness proportional			
Survivor selection	Generational replacement			

UiO **Constitution** University of Orio

Summary: The standard EA variants

Name	Representation	Crossover	Mutation	Parent selection	Survivor selection	Specialty
Genetic Algorithm	Usually fixed-length vector	Any or none	Any	Any	Any	None
Evolution Strategies	Real-valued vector	Discrete or intermediate recombination	Gaussian	Random draw	Best N	Strategy parameters
Evolutionary Programming	Real-valued vector	None	Gaussian	One child each	Tournament	Strategy parameters
Genetic Programming	Tree	Swap sub-tree	Replace sub-tree	Usually fitness proportional	Generational replacement	None

74

UIO S Department of Informatica Outrouby of Onio

Particle Swarm Optimisation: Quick overview

- Developed: in 1995 by Kennedy and Eberhart
- Inspired by social behavior of bird flocking/fish schooling

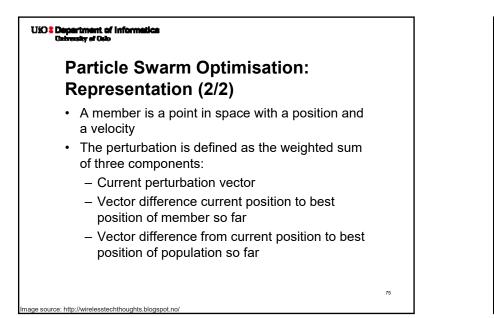
UiO # Department of Informatica Violensity of Osio

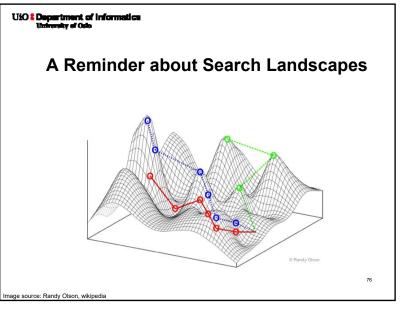
Particle Swarm Optimisation: Representation (1/2)

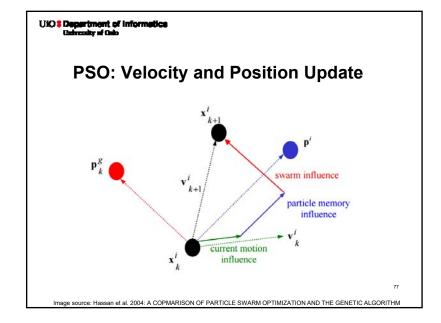
- Every population member can be considered as a pair $\langle \bar{x},\bar{p}\rangle$

where the first vector is candidate solution and the second one a perturbation vector in $\ensuremath{\mathsf{IR}}^n$

, where $\overline{p}{\,}'$ is calculated from $\,\overline{p}\, {\rm and}\,$ some additional information







UiO S Department of Informatica Calvesity of Oslo				
Particle Swarm Optimisation: Summary				
Summary				
Representation	Real-valued vectors			
Recombination	None			
Mutation	Adding velocity vector			
Parent selectior	Deterministic (each parent creates one offspring via mutation)			
Survivor selection	on Generational (offspring replaces parents)			



