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Key points from last time (1/3)

• Selection pressure
• Parent selection:

– Fitness proportionate
– Rank-based
– Tournament selection
– Uniform selection

• Survivor selection
– Age-based vs fitness based
– Elitism

2



Key points from last time (2/3)

• Diversity maintainance:
– Fitness sharing
– Crowding
– Speciation
– Island models
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Key points from last time (3/3)
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Name Representation Crossover Mutation Parent 
selection

Survivor 
selection

Specialty

Simple 
Genetic 
Algorithm

Binary vector 1-point 
crossover Bit flip Fitness 

proportional
Generational 
replacement None

Evolution
Strategies Real-valued vector

Discrete or 
intermediate 

recombination
Gaussian Random draw Best N Strategy 

parameters

Evolutionary 
Programming Real-valued vector None Gaussian One child each Tournament Strategy 

parameters

Genetic 
Programming Tree Swap sub-tree Replace 

sub-tree
Usually fitness 

proportional
Generational 
replacement None



Chapter 9:
Working with Evolutionary Algorithms

1. Types of problem
2. Algorithm design
3. Measurements and statistics
4. Test problems
5. Some tips and summary
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Main Types of Problem we Apply EAs 
to
• Design (one-off) problems
• Repetetive problems

– Special case: On-line control
• Academic Research
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Example Design Problem
• Optimising spending on improvements to 

national road network
– Total cost: billions of Euro
– Computing costs negligible
– Six months to run algorithm on hundreds computers
– Many runs possible
– Must produce very good result just once
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Example Repetitive Problem

• Optimising Internet shopping 
delivery route
– Need to run regularly/repetitively
– Different destinations each day
– Limited time to run algorithm each day
– Must always be reasonably good route in 

limited time
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Example On-Line Control Problem

• Robotic 
competition

• Goal: Gather more 
resources than the 
opponent

• Evolution 
optimizes strategy 
before and during 
competition
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Example On-Line Control Problem

• Representation: 
Array of object IDs:
[1 5 7 34 22 ….]

• Fitness test: 
Simulates rest of 
match, calculating 
our score (num. 
harvested 
resources)
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On-Line Control

• Needs to run regularly/repetitively
• Limited time to run algorithm
• Must always deliver reasonably good 

solution in limited time
• Requires relatively similar problems from 

one timestep to the next
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Why we require similar problems:
Effect of changes on fitness landscape

13

Before environmental change After environmental change



Goals for Academic Research on EAs

• Show that EC is applicable in a (new) problem 
domain (real-world applications)

• Show that my_EA is better than benchmark_EA
• Show that EAs outperform traditional algorithms 
• Optimize or study impact of parameters on the 

performance of an EA
• Investigate algorithm behavior (e.g. interaction 

between selection and variation)
• See how an EA scales-up with problem size
• …
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1. Types of problem
2. Algorithm design
3. Measurements and statistics
4. Test problems
5. Some tips and summary
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Algorithm design

• Design a representation
• Design a way of mapping a genotype to a 

phenotype
• Design a way of evaluating an individual
• Design suitable mutation operator(s)
• Design suitable recombination operator(s)
• Decide how to select individuals to be parents
• Decide how to select individuals for the next 

generation (how to manage the population)
• Decide how to start: initialization method
• Decide how to stop: termination criterion 16

[1 5 7 34 22 ….]
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Typical Results from Several EA Runs

Run #

Fitness/   
Performance

1 2 3 4 5 N



Basic rules of experimentation
• EAs are stochastic 

never draw any conclusion from a single run 
– perform sufficient number of independent runs
– use statistical measures (averages, standard deviations) 
– use statistical tests to assess reliability of conclusions

• EA experimentation is about comparison 
always do a fair competition

– use the same amount of resources for the competitors
– try different comp. limits (to cope with turtle/hare effect)
– use the same performance measures   
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Turtle/hare effect
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How to Compare EA Results?

• Success Rate: Proportion of runs within x% 
of target

• Mean Best Fitness: Average best solution 
over n runs

• Best result (“Peak performance”) over n runs
• Worst result over n runs
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Peak vs Average Performance
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• For repetitive tasks, average (or worst) 
performance is most relevant

• For design tasks, peak performance is most 
relevant



Example: off-line performance 
measure evaluation 
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Which 
algorithm 
is better? 
Why? 
When?



Measuring Efficiency:
What time units do we use?
• Elapsed time? 

– Depends on computer, network, etc…

• CPU Time?
– Depends on skill of programmer, implementation, etc…

• Generations?
– Incomparable when parameters like population size change

• Evaluations?
– Other parts of the EA (e.g. local searches) could “hide” 

computational effort.
– Some evaluations can be faster/slower (e.g. memoization)
– Evaluation time could be small compared to other steps in 

the EA (e.g. genotype to phenotype translation)
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Scale-up Behavior
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Measures

• Performance measures (off-line)
– Efficiency (alg. speed, also called performance)

• Execution time
• Average no. of evaluations to solution (AES, i.e., number of 

generated points in the search space)
– Effectiveness (solution quality, also called accuracy)

• Success rate (SR): % of runs finding a solution 
• Mean best fitness at termination (MBF)

• “Working” measures (on-line)
– Population distribution (genotypic)
– Fitness distribution (phenotypic)
– Improvements per time unit or per genetic operator
– … 26



Example: on-line performance 
measure evaluation

Populations mean (best) fitness
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Algorithm B

Algorithm A



Example: averaging on-line measures 
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Averaging can “choke” interesting information



Example: overlaying on-line measures
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Overlay of curves can lead to very “cloudy” figures



Statistical Comparisons and 
Significance
• Algorithms are stochastic, results have 

element of “luck”
• If a claim is made “Mutation A is better than 

mutation B”, need to show statistical 
significance of comparisons

• Fundamental problem: two series of samples 
(random drawings) from the SAME 
distribution may have DIFFERENT averages 
and standard deviations

• Tests can show if the differences are 
significant or not 30



Example
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Is the new method better?



Example (cont’d)
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• Standard deviations supply additional info
• T-test (and alike) indicate the chance that the values came 

from the same underlying distribution (difference is due to 
random effects) E.g. with 7% chance in this example.
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Where to Find Test Problems for an 
EA?
1. Recognized benchmark problem repository 

(typically “challenging”) 
2. Problem instances made by random generator
3. Frequently encountered or otherwise important 

variants of given real-world problems

Choice has severe implications on:
– generalizability and 
– scope of the results
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Getting Problem Instances (1/4)
Benchmarks
• Standard data sets in problem repositories, e.g.:

– OR-Library
www.brunel.ac.uk/~mastjjb/jeb/info.html

– UCI Machine Learning Repository
www.ics.uci.edu/~mlearn/MLRepository.html

• Advantage: 
– Well-chosen problems and instances (hopefully)
– Much other work on these  results comparable

• Disadvantage:
– Not real – might miss crucial aspect
– Algorithms get tuned for popular test suites
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Getting Problem Instances (2/4)
Problem instance generators
• Problem instance generators produce simulated 

data for given parameters, e.g.:
– GA/EA Repository of Test Problem Generators

http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.cs.uwyo.edu/~wspear
s/generators.html

• Advantage:
– Allow very systematic comparisons for they

• can produce many instances with the same characteristics
• enable gradual traversal of a range of characteristics 

(hardness)
– Can be shared allowing comparisons with other researchers

• Disadvantage
– Not real – might miss crucial aspect
– Given generator might have hidden bias 36



Getting Problem Instances (3/4)
Problem instance generators
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Getting Problem Instances (4/4)
Real-world problems
• Testing on (own collected) real data 
• Advantages:

– Results could be considered as very relevant viewed from 
the application domain (data supplier)

• Disadvantages
– Can be over-complicated
– Can be few available sets of real data
– May be commercial sensitive – difficult to publish and to 

allow others to compare
– Results are hard to generalize
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Summary of tips for experiments
• Be organized
• Decide what you want & define appropriate measures
• Choose test problems carefully
• Make an experiment plan (estimate time when possible)
• Perform sufficient number of runs
• Keep all experimental data (never throw away anything)
• Include in publications all necessary parameters to make 

others able to repeat your experiments
• Use good statistics (“standard” tools from Web, MS, R)
• Present results well (figures, graphs, tables, …)
• Watch the scope of your claims
• Aim at generalizable results
• Publish code for reproducibility of results (if applicable)
• Publish data for external validation (open science) 40



Chapter 10:
Hybridisation with Other Techniques: 
Memetic Algorithms

1. Why Hybridise?
2. What is a Memetic 

Algorithm?
3. Local Search

– Lamarckian vs. 
Baldwinian
adaptation

4. Where to hybridise
41



1. Why Hybridise

• Might be looking at improving on existing 
techniques (non-EA)

• Might be looking at improving EA search for 
good solutions 
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1. Why Hybridise: One-Max Example

• The One-Max problem: maximize the number 
of 1’s in a binary string: [1 0 0 1 0 1 … 1]

• A GA gives rapid progress initially, but very 
slow towards the end

• Integrating a local search in the EA speeds 
things up
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1. Why Hybridise
Michalewicz’s view on EAs in context
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2. What is a Memetic Algorithm?
• The combination of Evolutionary Algorithms with 

Local Search Operators that work within the EA 
loop has been termed “Memetic Algorithms”

• Term also applies to EAs that use instance-
specific knowledge

• Memetic Algorithms have been shown to be orders 
of magnitude faster and more accurate than EAs 
on some problems, and are the “state of the art” on 
many problems

45



3. Local Search:
Main Idea (simplified)
• Make a small, but intelligent (problem-specific), 

change to an existing solution
• If the change improves it, keep the improved version
• Otherwise, keep trying small, smart changes until it 

improves, or until we have tried all possible small 
changes
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Swap (1,3)



3. Local Search:
Local Search
• Defined by combination of neighbourhood and 

pivot rule 
• N(x) is defined as the set of points that can be 

reached from x with one application of a move 
operator
– e.g. bit flipping search on binary problems
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N(d) = {a,c,h}
d [0 1 1]

h [1 1 1]

b [0 0 0]

c [0 1 0] 

a [0 0 1]

g [1 1 0]

e [1 0 1]f [1 0 0]



3. Local Search:
Pivot Rules
• Is the neighbourhood searched randomly, 

systematically or exhaustively ?
• does the search stop as soon as a fitter 

neighbour is found (Greedy Ascent) 
• or is the whole set of neighbours examined 

and the best chosen (Steepest Ascent)
• of course there is no one best answer, but 

some are quicker than others to run ........
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3. Local Search: Example

• Genotype: Array of 
integers

• Greedy local search:
– Select N random pairs 

of integers (u, v)
– Test swapping u and v
– If a swap gives better 

plan: Return new plan
– Else: Move to next (u,v)

49

[1 5 7 34 22 ….]

Decoding



4. Local Search and Evolution

• Do offspring inherit what their parents have 
“learnt” in life?

– Yes - Lamarckian evolution
• Improved fitness and genotype

– No - Baldwinian evolution
• Improved fitness only
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4. Lamarckian Evolution
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(Image from sparknotes.com)

• Lamarck, 1809: Traits 
acquired in parents’ 
lifetimes can be inherited by 
offspring

• This type of direct 
inheritance of acquired 
traits is not possible, 
according to modern 
evolutionary theory
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4. Inheriting Learned Traits?

(Brain from Wikimedia Commons)



4. Local Search and Evolution

• In practice, most recent Memetic Algorithms 
use:
– Pure Lamarckian evolution, or
– A stochastic mix of Lamarckian and Baldwinian

evolution
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5. Where to Hybridise:
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5. Where to Hybridise: In initialization

• Seeding
– Known good solutions are added

• Selective initialization
– Generate solutions, keep best 

• Refined start
– Perform local search on initial population
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5. Where to Hybridise:             
Intelligent mutation and crossover

• Mutation bias
– Mutation operator has bias towards certain changes

• Crossover hill-climber
– Test all 1-point crossover results, choose best

• “Repair” mutation
– Use heuristic to make infeasible solution feasible

56



Note: We already saw examples of 
this. E.g. Partially mapped crossover
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Hybrid Algorithms Summary

• It is common practice to hybridise EA’s when 
using them in a real world context.

• This may involve the use of operators from other 
algorithms which have already been used on the 
problem, or the incorporation of domain-specific 
knowledge

• Memetic algorithms have been shown to be orders 
of magnitude faster and more accurate than EAs on 
some problems, and are the “state of the art” on 
many problems
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Chapter 12:
Multiobjective Evolutionary Algorithms

• Multiobjective optimisation problems (MOP)
- Pareto optimality

• EC approaches
- Selection operators
- Preserving diversity
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Multi-Objective Problems (MOPs)

• Wide range of problems can be categorised 
by the presence of a number of n possibly 
conflicting objectives:
– buying a car: speed vs. price vs. reliability
– engineering design: lightness vs. strength

• Two problems:
– finding set of good solutions
– choice of best for the particular application
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An example: Buying a car

cost

speed
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Two approaches to multiobjective
optimisation

• Weighted sum (scalarisation):
– transform into a single objective optimisation method
– compute a weighted sum of the different objectives

• A set of multi-objective solutions (Pareto front):
– The population-based nature of EAs used to 

simultaneously search for a set of points approximating 
Pareto front
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Comparing solutions

• Optimisation task:
Minimize both f1 and f2

• Then:
a is better than b
a is better than c
a is worse than e
a and d are incomparable

Objective space
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Dominance relation

• Solution x dominates solution y, (x ≤ y), if:
– x is better than y in at least one objective,
– x is not worse than y in all other objectives

solutions 
dominated 

by x

solutions 
dominating 

x
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Pareto optimality

• Solution x is non-dominated among a set of solutions 
Q if no solution from Q dominates x

• A set of non-dominated solutions from the entire 
feasible solution space is the Pareto set, or Pareto 
front, its members Pareto-optimal solutions
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Illustration of the concepts

f1(x)

f2(x)
min

min 66



Illustration of the concepts

f1(x)

f2(x)
min

min 67



Goal of multiobjective optimisers

• Find a set of non-dominated solutions (approximation 
set) following the criteria of:
– convergence (as close as possible to the Pareto-

optimal front),
– diversity (spread, distribution)
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EC approach:
Requirements
1. Way of assigning fitness and selecting 

individuals, 
– usually based on dominance

2. Preservation of a diverse set of points
– similarities to multi-modal problems

3. Remembering all the non-dominated 
points you have seen
– usually using elitism or an archive
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EC approach: 
1. Selection

• Could use aggregating approach and change 
weights during evolution
– no guarantees 

• Different parts of population use different 
criteria
– no guarantee of diversity

• Dominance (made a breakthrough for MOEA)
– ranking or depth based
– fitness related to whole population
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Example: Dominance Ranking in 
NSGA-II
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Figure from Clune, Mouret & Lipson (2013): “The evolutionary origins of modularity”



EC approach:
2. Diversity maintenance
• Aim: Evenly distributed population along the 

Pareto front
• Usually done by niching techniques such as:

– fitness sharing
– adding amount to fitness based on inverse 

distance to nearest neighbour
• All rely on some distance metric in genotype / 

phenotype / objective space
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EC approach:
3. Remembering Good Points

• Could just use elitist algorithm, e.g. (  +  ) 
replacement

• Common to maintain an archive of non-
dominated points
– some algorithms use this as a second population 

that can be in recombination etc.
– others divide archive into regions too
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Multi objective problems - Summary

• MO problems occur very frequently 

• EAs are very good in solving MO problems

• MOEAs are one of the most successful EC 
subareas 
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