
INF3490 - Biologically inspired computing
Lecture 4: Eiben and Smith,

Working with evolutionary algorithms (chpt 9)
Hybrid algorithms (chpt 10)

Multi-objective optimization (chpt 12)

Kai Olav Ellefsen

Key points from last time (1/3)

• Selection pressure
• Parent selection:

– Fitness proportionate
– Rank-based
– Tournament selection
– Uniform selection

• Survivor selection
– Age-based vs fitness based
– Elitism

2

Key points from last time (2/3)

• Diversity maintainance:
– Fitness sharing
– Crowding
– Speciation
– Island models

3

Key points from last time (3/3)

4

Name Representation Crossover Mutation Parent
selection

Survivor
selection

Specialty

Simple
Genetic
Algorithm

Binary vector 1-point
crossover Bit flip Fitness

proportional
Generational
replacement None

Evolution
Strategies Real-valued vector

Discrete or
intermediate

recombination
Gaussian Random draw Best N Strategy

parameters

Evolutionary
Programming Real-valued vector None Gaussian One child each Tournament Strategy

parameters

Genetic
Programming Tree Swap sub-tree Replace

sub-tree
Usually fitness

proportional
Generational
replacement None

Chapter 9:
Working with Evolutionary Algorithms

1. Types of problem
2. Algorithm design
3. Measurements and statistics
4. Test problems
5. Some tips and summary

5

Main Types of Problem we Apply EAs
to
• Design (one-off) problems
• Repetetive problems

– Special case: On-line control
• Academic Research

6

Example Design Problem
• Optimising spending on improvements to

national road network
– Total cost: billions of Euro
– Computing costs negligible
– Six months to run algorithm on hundreds computers
– Many runs possible
– Must produce very good result just once

7

Example Repetitive Problem

• Optimising Internet shopping
delivery route
– Need to run regularly/repetitively
– Different destinations each day
– Limited time to run algorithm each day
– Must always be reasonably good route in

limited time

8

Example On-Line Control Problem

• Robotic
competition

• Goal: Gather more
resources than the
opponent

• Evolution
optimizes strategy
before and during
competition

9

Example On-Line Control Problem

• Representation:
Array of object IDs:
[1 5 7 34 22 ….]

• Fitness test:
Simulates rest of
match, calculating
our score (num.
harvested
resources)

10

On-Line Control

• Needs to run regularly/repetitively
• Limited time to run algorithm
• Must always deliver reasonably good

solution in limited time
• Requires relatively similar problems from

one timestep to the next

12

Why we require similar problems:
Effect of changes on fitness landscape

13

Before environmental change After environmental change

Goals for Academic Research on EAs

• Show that EC is applicable in a (new) problem
domain (real-world applications)

• Show that my_EA is better than benchmark_EA
• Show that EAs outperform traditional algorithms
• Optimize or study impact of parameters on the

performance of an EA
• Investigate algorithm behavior (e.g. interaction

between selection and variation)
• See how an EA scales-up with problem size
• …

14

Working with Evolutionary Algorithms

1. Types of problem
2. Algorithm design
3. Measurements and statistics
4. Test problems
5. Some tips and summary

15

Algorithm design

• Design a representation
• Design a way of mapping a genotype to a

phenotype
• Design a way of evaluating an individual
• Design suitable mutation operator(s)
• Design suitable recombination operator(s)
• Decide how to select individuals to be parents
• Decide how to select individuals for the next

generation (how to manage the population)
• Decide how to start: initialization method
• Decide how to stop: termination criterion 16

[1 5 7 34 22 ….]

Working with Evolutionary Algorithms

1. Types of problem
2. Algorithm design
3. Measurements and statistics
4. Test problems
5. Some tips and summary

17

18

Typical Results from Several EA Runs

Run #

Fitness/
Performance

1 2 3 4 5 N

Basic rules of experimentation
• EAs are stochastic

never draw any conclusion from a single run
– perform sufficient number of independent runs
– use statistical measures (averages, standard deviations)
– use statistical tests to assess reliability of conclusions

• EA experimentation is about comparison
always do a fair competition

– use the same amount of resources for the competitors
– try different comp. limits (to cope with turtle/hare effect)
– use the same performance measures

19

Turtle/hare effect

20

How to Compare EA Results?

• Success Rate: Proportion of runs within x%
of target

• Mean Best Fitness: Average best solution
over n runs

• Best result (“Peak performance”) over n runs
• Worst result over n runs

21

Peak vs Average Performance

22

• For repetitive tasks, average (or worst)
performance is most relevant

• For design tasks, peak performance is most
relevant

Example: off-line performance
measure evaluation

23

Which
algorithm
is better?
Why?
When?

Measuring Efficiency:
What time units do we use?
• Elapsed time?

– Depends on computer, network, etc…

• CPU Time?
– Depends on skill of programmer, implementation, etc…

• Generations?
– Incomparable when parameters like population size change

• Evaluations?
– Other parts of the EA (e.g. local searches) could “hide”

computational effort.
– Some evaluations can be faster/slower (e.g. memoization)
– Evaluation time could be small compared to other steps in

the EA (e.g. genotype to phenotype translation)
24

Scale-up Behavior

25

Measures

• Performance measures (off-line)
– Efficiency (alg. speed, also called performance)

• Execution time
• Average no. of evaluations to solution (AES, i.e., number of

generated points in the search space)
– Effectiveness (solution quality, also called accuracy)

• Success rate (SR): % of runs finding a solution
• Mean best fitness at termination (MBF)

• “Working” measures (on-line)
– Population distribution (genotypic)
– Fitness distribution (phenotypic)
– Improvements per time unit or per genetic operator
– … 26

Example: on-line performance
measure evaluation

Populations mean (best) fitness

27

Algorithm B

Algorithm A

Example: averaging on-line measures

28

Averaging can “choke” interesting information

Example: overlaying on-line measures

29

Overlay of curves can lead to very “cloudy” figures

Statistical Comparisons and
Significance
• Algorithms are stochastic, results have

element of “luck”
• If a claim is made “Mutation A is better than

mutation B”, need to show statistical
significance of comparisons

• Fundamental problem: two series of samples
(random drawings) from the SAME
distribution may have DIFFERENT averages
and standard deviations

• Tests can show if the differences are
significant or not 30

Example

31

Is the new method better?

Example (cont’d)

32

• Standard deviations supply additional info
• T-test (and alike) indicate the chance that the values came

from the same underlying distribution (difference is due to
random effects) E.g. with 7% chance in this example.

Working with Evolutionary Algorithms

1. Types of problem
2. Algorithm design
3. Measurements and statistics
4. Test problems
5. Some tips and summary

33

Where to Find Test Problems for an
EA?
1. Recognized benchmark problem repository

(typically “challenging”)
2. Problem instances made by random generator
3. Frequently encountered or otherwise important

variants of given real-world problems

Choice has severe implications on:
– generalizability and
– scope of the results

34

Getting Problem Instances (1/4)
Benchmarks
• Standard data sets in problem repositories, e.g.:

– OR-Library
www.brunel.ac.uk/~mastjjb/jeb/info.html

– UCI Machine Learning Repository
www.ics.uci.edu/~mlearn/MLRepository.html

• Advantage:
– Well-chosen problems and instances (hopefully)
– Much other work on these results comparable

• Disadvantage:
– Not real – might miss crucial aspect
– Algorithms get tuned for popular test suites

35

Getting Problem Instances (2/4)
Problem instance generators
• Problem instance generators produce simulated

data for given parameters, e.g.:
– GA/EA Repository of Test Problem Generators

http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.cs.uwyo.edu/~wspear
s/generators.html

• Advantage:
– Allow very systematic comparisons for they

• can produce many instances with the same characteristics
• enable gradual traversal of a range of characteristics

(hardness)
– Can be shared allowing comparisons with other researchers

• Disadvantage
– Not real – might miss crucial aspect
– Given generator might have hidden bias 36

Getting Problem Instances (3/4)
Problem instance generators

37

Getting Problem Instances (4/4)
Real-world problems
• Testing on (own collected) real data
• Advantages:

– Results could be considered as very relevant viewed from
the application domain (data supplier)

• Disadvantages
– Can be over-complicated
– Can be few available sets of real data
– May be commercial sensitive – difficult to publish and to

allow others to compare
– Results are hard to generalize

38

Working with Evolutionary Algorithms

1. Types of problem
2. Algorithm design
3. Measurements and statistics
4. Test problems
5. Some tips and summary

39

Summary of tips for experiments
• Be organized
• Decide what you want & define appropriate measures
• Choose test problems carefully
• Make an experiment plan (estimate time when possible)
• Perform sufficient number of runs
• Keep all experimental data (never throw away anything)
• Include in publications all necessary parameters to make

others able to repeat your experiments
• Use good statistics (“standard” tools from Web, MS, R)
• Present results well (figures, graphs, tables, …)
• Watch the scope of your claims
• Aim at generalizable results
• Publish code for reproducibility of results (if applicable)
• Publish data for external validation (open science) 40

Chapter 10:
Hybridisation with Other Techniques:
Memetic Algorithms

1. Why Hybridise?
2. What is a Memetic

Algorithm?
3. Local Search

– Lamarckian vs.
Baldwinian
adaptation

4. Where to hybridise
41

1. Why Hybridise

• Might be looking at improving on existing
techniques (non-EA)

• Might be looking at improving EA search for
good solutions

42

1. Why Hybridise: One-Max Example

• The One-Max problem: maximize the number
of 1’s in a binary string: [1 0 0 1 0 1 … 1]

• A GA gives rapid progress initially, but very
slow towards the end

• Integrating a local search in the EA speeds
things up

43

1. Why Hybridise
Michalewicz’s view on EAs in context

44

2. What is a Memetic Algorithm?
• The combination of Evolutionary Algorithms with

Local Search Operators that work within the EA
loop has been termed “Memetic Algorithms”

• Term also applies to EAs that use instance-
specific knowledge

• Memetic Algorithms have been shown to be orders
of magnitude faster and more accurate than EAs
on some problems, and are the “state of the art” on
many problems

45

3. Local Search:
Main Idea (simplified)
• Make a small, but intelligent (problem-specific),

change to an existing solution
• If the change improves it, keep the improved version
• Otherwise, keep trying small, smart changes until it

improves, or until we have tried all possible small
changes

46

Swap (1,3)

3. Local Search:
Local Search
• Defined by combination of neighbourhood and

pivot rule
• N(x) is defined as the set of points that can be

reached from x with one application of a move
operator
– e.g. bit flipping search on binary problems

47

N(d) = {a,c,h}
d [0 1 1]

h [1 1 1]

b [0 0 0]

c [0 1 0]

a [0 0 1]

g [1 1 0]

e [1 0 1]f [1 0 0]

3. Local Search:
Pivot Rules
• Is the neighbourhood searched randomly,

systematically or exhaustively ?
• does the search stop as soon as a fitter

neighbour is found (Greedy Ascent)
• or is the whole set of neighbours examined

and the best chosen (Steepest Ascent)
• of course there is no one best answer, but

some are quicker than others to run

48

3. Local Search: Example

• Genotype: Array of
integers

• Greedy local search:
– Select N random pairs

of integers (u, v)
– Test swapping u and v
– If a swap gives better

plan: Return new plan
– Else: Move to next (u,v)

49

[1 5 7 34 22 ….]

Decoding

4. Local Search and Evolution

• Do offspring inherit what their parents have
“learnt” in life?

– Yes - Lamarckian evolution
• Improved fitness and genotype

– No - Baldwinian evolution
• Improved fitness only

50

4. Lamarckian Evolution

51

(Image from sparknotes.com)

• Lamarck, 1809: Traits
acquired in parents’
lifetimes can be inherited by
offspring

• This type of direct
inheritance of acquired
traits is not possible,
according to modern
evolutionary theory

52

4. Inheriting Learned Traits?

(Brain from Wikimedia Commons)

4. Local Search and Evolution

• In practice, most recent Memetic Algorithms
use:
– Pure Lamarckian evolution, or
– A stochastic mix of Lamarckian and Baldwinian

evolution

53

5. Where to Hybridise:

54

5. Where to Hybridise: In initialization

• Seeding
– Known good solutions are added

• Selective initialization
– Generate solutions, keep best

• Refined start
– Perform local search on initial population

55

5. Where to Hybridise:
Intelligent mutation and crossover

• Mutation bias
– Mutation operator has bias towards certain changes

• Crossover hill-climber
– Test all 1-point crossover results, choose best

• “Repair” mutation
– Use heuristic to make infeasible solution feasible

56

Note: We already saw examples of
this. E.g. Partially mapped crossover

57

Hybrid Algorithms Summary

• It is common practice to hybridise EA’s when
using them in a real world context.

• This may involve the use of operators from other
algorithms which have already been used on the
problem, or the incorporation of domain-specific
knowledge

• Memetic algorithms have been shown to be orders
of magnitude faster and more accurate than EAs on
some problems, and are the “state of the art” on
many problems

58

Chapter 12:
Multiobjective Evolutionary Algorithms

• Multiobjective optimisation problems (MOP)
- Pareto optimality

• EC approaches
- Selection operators
- Preserving diversity

59

Multi-Objective Problems (MOPs)

• Wide range of problems can be categorised
by the presence of a number of n possibly
conflicting objectives:
– buying a car: speed vs. price vs. reliability
– engineering design: lightness vs. strength

• Two problems:
– finding set of good solutions
– choice of best for the particular application

60

An example: Buying a car

cost

speed

61

Two approaches to multiobjective
optimisation

• Weighted sum (scalarisation):
– transform into a single objective optimisation method
– compute a weighted sum of the different objectives

• A set of multi-objective solutions (Pareto front):
– The population-based nature of EAs used to

simultaneously search for a set of points approximating
Pareto front

62

Comparing solutions

• Optimisation task:
Minimize both f1 and f2

• Then:
a is better than b
a is better than c
a is worse than e
a and d are incomparable

Objective space

63

Dominance relation

• Solution x dominates solution y, (x ≤ y), if:
– x is better than y in at least one objective,
– x is not worse than y in all other objectives

solutions
dominated

by x

solutions
dominating

x

64

Pareto optimality

• Solution x is non-dominated among a set of solutions
Q if no solution from Q dominates x

• A set of non-dominated solutions from the entire
feasible solution space is the Pareto set, or Pareto
front, its members Pareto-optimal solutions

65

Illustration of the concepts

f1(x)

f2(x)
min

min 66

Illustration of the concepts

f1(x)

f2(x)
min

min 67

Goal of multiobjective optimisers

• Find a set of non-dominated solutions (approximation
set) following the criteria of:
– convergence (as close as possible to the Pareto-

optimal front),
– diversity (spread, distribution)

68

EC approach:
Requirements
1. Way of assigning fitness and selecting

individuals,
– usually based on dominance

2. Preservation of a diverse set of points
– similarities to multi-modal problems

3. Remembering all the non-dominated
points you have seen
– usually using elitism or an archive

69

EC approach:
1. Selection

• Could use aggregating approach and change
weights during evolution
– no guarantees

• Different parts of population use different
criteria
– no guarantee of diversity

• Dominance (made a breakthrough for MOEA)
– ranking or depth based
– fitness related to whole population

70

Example: Dominance Ranking in
NSGA-II

71

Figure from Clune, Mouret & Lipson (2013): “The evolutionary origins of modularity”

EC approach:
2. Diversity maintenance
• Aim: Evenly distributed population along the

Pareto front
• Usually done by niching techniques such as:

– fitness sharing
– adding amount to fitness based on inverse

distance to nearest neighbour
• All rely on some distance metric in genotype /

phenotype / objective space

72

EC approach:
3. Remembering Good Points

• Could just use elitist algorithm, e.g. (+)
replacement

• Common to maintain an archive of non-
dominated points
– some algorithms use this as a second population

that can be in recombination etc.
– others divide archive into regions too

73

Multi objective problems - Summary

• MO problems occur very frequently

• EAs are very good in solving MO problems

• MOEAs are one of the most successful EC
subareas

74

